
1

Distributed DNN Inference with Fine-grained
Model Partitioning in Mobile Edge

Computing Networks
Hui Li, Student Member, IEEE, Xiuhua Li, Member, IEEE, Qilin Fan, Member, IEEE , Qiang He, Senior

Member, IEEE, Xiaofei Wang, Senior Member, IEEE, Victor C. M. Leung, Life Fellow, IEEE

Abstract—Model partitioning is a promising technique for improving the efficiency of distributed inference by executing partial deep
neural network (DNN) models on edge servers (ESs) or Internet-of-Things (IoT) devices. However, due to heterogeneous resources of
ESs and IoT devices in mobile edge computing (MEC) networks, it is non-trivial to guarantee the DNN inference speed to satisfy
specific delay constraints. Meanwhile, many existing DNN models have a deep and complex architecture with numerous DNN blocks,
which leads to a huge search space for fine-grained model partitioning. To address these challenges, we investigate distributed DNN
inference with fine-grained model partitioning, with collaborations between ESs and IoT devices. We formulate the problem and
propose a multi-task learning based asynchronous advantage actor-critic approach to find a competitive model partitioning policy that
reduces DNN inference delay. Specifically, we combine the shared layers of actor-network and critic-network via soft parameter
sharing, and expand the output layer into multiple branches to determine the model partitioning policy for each DNN block individually.
Experiment results demonstrate that the proposed approach outperforms state-of-the-art approaches by reducing total inference delay,
edge inference delay and local inference delay by an average of 4.76%, 10.04% and 8.03% in the considered MEC networks.

Index Terms—Mobile edge computing, distributed DNN inference, model partitioning, multi-task learning, asynchronous advantage
actor-critic.

F

1 INTRODUCTION

• This work is supported in part by National Key R & D Program of
China (Grants No. 2022YFE0125400), National NSFC (Grants No.
62372072, 62102053, 62072060, 92067206 and 61972222), Chongqing
Research Program of Basic Research and Frontier Technology (Grant
No. cstc2022ycjhbgzxm0058), Key Research Program of Chongqing Sci-
ence & Technology Commission (Grant No. cstc2021jscx-dxwtBX0019),
Science and Technology Plan Project of Chongqing Economic and In-
formation Commission (Grant No. 2211R49R03), Haihe Lab of ITAI
(Grant No. 22HHXCJC00002), the Natural Science Foundation of
Chongqing, China (Grant No. CSTB2022NSCQ-MSX1104), the General
Program of Chongqing Science & Technology Commission (Grant No.
CSTB2022TIAD-GPX0017, CSTB2022TIAD-STX0006), Key Laboratory
of Big Data Intelligent Computing, Chongqing University of Posts and
Telecommunications (Grant No. BDIC-2023-B-003), Regional Innovation
Cooperation Project of Sichuan Province (Grant No. 2023YFQ0028),
Regional Science and Technology Innovation Cooperation Project of
Chengdu City (Grant No. 2023-YF11-00023-HZ), and Guangdong Pearl
River Talent Recruitment Program (Grants No. 2019ZT08X603 and
2019JC01X235). (Corresponding author: Xiuhua Li).

• H. Li, X. Li, and Q. Fan are with the School of Big Data & Software
Engineering, Chongqing University, Chongqing, China 400000 (e-mail:
h.li@cqu.edu.cn, lixiuhua1988@gmail.com, fanqilin@cqu.edu.cn).

• Q. He is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, School of Computer Science and
Technology, Huazhong University of Science and Technology, Wuhan
430074, China, and the Department of Computing Technologies, Swin-
burne University of Technology, Melbourne, VIC 3122, Australia (e-mail:
hqiang@hust.edu.cn).

• X. Wang is with the College of Intelligence and Computing, Tianjin
University, China 300072 (e-mail:xiaofeiwang@tju.edu.cn).

• V. C. M. Leung is with the College of Computer Science & Software
Engineering, Shenzhen University, Shenzhen 518060, China, and also
with the Department of Electrical and Computer Engineering, The Uni-
versity of British Columbia, Vancouver, BC V6T1Z4, Canada (e-mail:
vleung@ieee.org).

W ITH the rapid advancement of deep learning (DL)
technology and Internet-of-Things (IoT) devices, ap-

plications in a wide range of industries are generating mas-
sive deep neural network (DNN) inference tasks, such as
virtual/augmented reality, video streaming services, etc [1]–
[5]. The traditional cloud-based architecture deploys re-
sources on centralized cloud servers far away from IoT de-
vices. It is hard for them to satisfy the real-time requirements
when processing large-scale concurrent DNN tasks. For-
tunately, the emergence of mobile edge computing (MEC)
networks offers a possible solution to this problem. It is a
novel technology that partially sinks computing resources
to the network edges (e.g., base stations), where real-time
distributed DNN inference can be facilitated [6]–[8]. The
deployment of DNN inference tasks at the network edge
can improve the quality of service/experience (QoS/QoE)
for IoT devices and in the meantime, alleviate the pressure
on the backbone network significantly [9]–[11].

Although MEC networks offer unique advantages in
reducing inference delay, it suffer from potential perfor-
mance bottlenecks when facilitating distributed DNN infer-
ence [12]–[14]. First, it is non-trivial to guarantee that all the
DNN inference tasks can be executed on time under specific
delay constraints when processing large-scale concurrent
DNN inference tasks [15], [16]. In addition, it is a grand
challenge to coordinate the resources of IoT devices and
ESs in a distributed manner. They usually have constrained
computing power and storage capacity, making it difficult to
drive inferences based on the entire DNN model, especially
large ones. The heterogeneous resource of ESs and IoT de-
vices complicates the process of distributed DNN inference,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

2

distributed

Inference

Partial DNN Edge Layer

Partial DNN

Device Layer

Intermediate

feature map

transmission

Inference

Result

Entire DNN

Fig. 1. Paradigm of model partitioning of distributed DNN inference in
MEC networks.

and may lead to extra inference delay [17], [18].
Recently, model partitioning is widely acknowledged as

a promising solution to the above challenges. With model
partitioning, we can divide an entire DNN model into
multiple blocks or fragments, and execute these blocks or
fragments individually on different ESs or IoT devices for
distributed inference, as shown in Fig. 1. This technique
[19]–[21] is effective in resource-constrained MEC networks
where ESs or IoT devices may not have sufficient resources
to execute entire DNN model, especially when the sizes of
new DNN models are increasing rapidly [22], [23]. How-
ever, conventional model partitioning approaches only uti-
lize a single model partition point that divides the entire
DNN model into cloud servers and IoT devices locally
for distributed inference. Despite the potential for dynamic
adjustment of the model partitioning point, its flexibility
remains inherently limited. Fine-grained model partition-
ing [24]–[26] adopts multi-partition points and splits en-
tire DNN model into multiple DNN fragments or blocks
for distributed inference on different IoT devices and ESs.
During distributed DNN inference, the intermediate feature
map of previous DNN block is transmitted to the location
of subsequent DNN block. This approach can effectively
reduce DNN inference delay and energy consumption over-
heads [27], [28]. Combining MEC and fine-grained model
partitioning offers new opportunities for improving the
performance of distributed DNN inference.

To improve the performance of distributed DNN in-
ference with fine-grained model partitioning in MEC net-
works, there is a fundamental challenge to overcome: How
to determine a fine-grained model partitioning policy for
an efficient distributed DNN inference?

Our goal is to search for an appropriate model partition-
ing policy that incurs the lowest inference delay. However,
many existing DNN models (e.g., AlexNet and VGG) have a
deep and complex architecture with numerous DNN blocks.
We need to partition these DNN blocks for execution on
different ESs to speed up the DNN inference process. There
is a large search space MN [24], [25](M , N is the number of
DNN blocks and ESs, respectively) for finding the optimal
model partitioning policy. Actually, the fine-grained DNN
model partitioning is a combinatorial optimization problem,

which is complicated by the potentially-exponential scale of
DNN blocks. It is non-trivial to find the optimal solution
within a polynomial time. This highlights the strong need
for efficient approaches to tackle this issue.

Several pioneers attempted to facilitate distributed DNN
inference with model partitioning based on deep reinforce-
ment learning (DRL) [29], [30]. Dong et al. [29] proposed
a DNN inference framework and developed a DRL-based
algorithm to learn the model partitioning policy that min-
imizes the inference delay. Kim et al. [30] proposed a soft
actor-critic based DNN inference strategy that considers
the IoT devices’ differentiated levels of heterogeneous re-
sources. However, when these DRL approaches are applied
to DNN model partitioning directly, the number of nodes
in the output layer of DRL agent (i.e., the size of the action
space) will grow exponentially [31], [32] with the number
of DNN blocks, thereby resulting in high training time.
Multi-task learning based DRL approach can significantly
reduce action space and make decisions for multiple related
tasks in parallel by sharing representation information [33]–
[36]. Considering the partitioned DNN blocks are a series of
DNN subtasks with shared characteristics, multi-task learn-
ing based DRL approach can separate the output layer of the
action space to generate a fine-grained model partitioning
policy for each DNN block. Recently, a number of studies
have tried to use this approach to solve the corresponding
optimization problems in MEC networks. Dong et al. [33]
developed a joint slicing and network routing mechanism
via multi-task learning based DRL algorithm to satisfy ser-
vice requirements in 6G mobile networks. Chen et al. [34]
proposed a multi-task learning based transfer DRL scheme
to train the DRL agent that proficiently handles multiple
tasks simultaneously. These studies have demonstrated that
the multi-task learning based DRL approach has advantages
over traditional DRL in reducing the action space of policy-
making, thereby reducing the model training time.

In this paper, we are inspired to investigate the problem
of distributed DNN inference with fine-grained model par-
titioning to minimize the inference delay in MEC networks.
To reduce the action space of model partitioning system-
atically, this paper presents a novel multi-task learning
based asynchronous advantage actor-critic (A3C) approach
that facilitates distributed DNN inference with fine-grained
model partitioning. It expands the conventional actor-critic
network into a multi-task learning manner and integrates
the hidden layer of actor-network and critic-network into
a shared layer via soft parameter sharing. In this way, it
allows agents to share experiences efficiently, which can sig-
nificantly reduce the action space of policy-making, thereby
reducing the model training time. The major contributions
of this paper are summarized as follows:

• We present a fine-grained model partitioning mech-
anism that supports distributed DNN inference with
the collaboration of ESs and IoT devices, for signif-
icantly reducing the DNN inference delay with spe-
cific delay constraints. We formulate the optimization
problem as a markov decision process (MDP) with
the objective to maximize the long-term discounted
cumulative reward of distributed DNN inference.

• We propose a novel multi-task learning based A3C

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

3

approach to search for an appropriate fine-grained
model partitioning policy. Specifically, we employ
soft parameter sharing to integrate the shared layers
of both the actor-network and critic-network, and
expand the output layer into multiple branches to
determine the fine-grained model partitioning policy
for each individual DNN block. It can significantly
reduce the action space of DRL agents, thereby re-
ducing the training time of the proposed approach.

• We evaluate the performance of the proposed ap-
proach through extensive experiments conducted on
widely-used datasets in MEC networks. The exper-
imental results validate the effectiveness of the pro-
posed approach, which achieves an average perfor-
mance improvement of 4.76%, 10.04% and 8.03% in
terms of minimizing the total inference delay, edge
inference delay and local inference delay in the con-
sidered MEC networks, respectively.

This paper is organized as follows. The related work
is presented in Section II. Section III discusses the system
model and the problem formulation. The proposed ap-
proach is introduced in Section IV. We present and analyze
the experimental results in Section V. Finally, we conclude
this paper in Section VI.

2 RELATED WORK

2.1 DNN Inference in MEC Networks

Recently, many pioneers have studied the issue of DNN in-
ference in MEC networks [22], [37], [38]. The authors in [37]
proposed an efficient distributed DNN inference framework
in MEC networks. Different DNN block is partitioned and
offloaded to different locations for inference. The authors
in [22] studied an energy-aware distributed DNN inference
framework to minimize energy consumption and proposed
an approximate algorithm for solving the DNN inference in
MEC networks. Zeng et al. [38] proposed a distributed DNN
inference framework, named CoEdge, to utilize available
computation resources at network edges and orchestrate
cooperative DNN inference over heterogeneous IoT devices.
However, these studies only considered DNN inference un-
der the condition of sufficient computing resources, ignor-
ing the restriction of specific tolerated delay. Actually, due to
the real-time requirements of delay-sensitive DNN inference
tasks, it is necessary to study the issue of distributed DNN
inference under specific delay constraints.

To deal with scenarios with specific delay constraints,
many researchers try to improve DNN inference perfor-
mance while ensuring the maximum tolerated delay [15],
[16], [39], [40]. Li et al. [15] studied a novel delay-aware
DNN inference problem to speed up inference parallelism
by DNN model partitioning. To satisfy the specific delay
requirement of DNN inference, the authors proposed an
online algorithm for dynamically improving the distributed
DNN inference process. The authors in [16] optimized the
model partitioning policy to reduce long-term DNN infer-
ence delay while guaranteeing delay or energy overheads
of ESs. Zhang et al. [39] proposed a DRL-based resource
management algorithm to maximize average DNN accuracy
while satisfying the specific delay requirements of DNN

tasks. Fan et al. [40] investigated the impact of joint DNN
inference and task offloading in industrial MEC networks.
To solve the formulated problem, the authors proposed a
DRL-based algorithm for finding the near-optimal solution.
These studies have been evidenced to improve the efficiency
of distributed DNN inference performance significantly.

2.2 Common Approaches for DNN Inference
Extensive studies have been conducted and achieved ex-
cellent results for DNN inference with model partitioning
based on DL in MEC networks [24], [41], [42]. Ren et al. [24]
developed a fine-grained DNN model partitioning frame-
work for distributed DNN inference towards mobile ser-
vices by coordinating the hierarchical computing resources.
Then the authors proposed a DRL approach for learning
the optimal model partitioning policy. The authors in [41]
proposed an adaptive collaborative inference framework
and developed an actor-critic based DRL algorithm to search
the model partitioning policies of DNN inference. Wu et al.
[42] investigated the distributed DNN inference problem in
industrial MEC networks. To solve the formulated problem,
the authors proposed a DRL-based algorithm to obtain the
near-optimal distributed DNN inference policy. Actually,
if DRL approaches are applied directly to DNN inference,
the size of the action space of the DRL agent will grow
exponentially with the number of DNN blocks.

Some studies have begun to investigate the performance
of multi-task learning on DNN inference [43]–[45]. Multi-
task learning can improve performance by sharing informa-
tion, so that the experience between DRL agents can comple-
ment each other. The authors in [43] proposed an on-device
multi-task DNN inference framework that supports typical
DNN layers (convolutional layers, fully connected layers)
and applies to DNN tasks with different input domains.
Zhang et al. [44] proposed a novel multi-task learning based
approach to reduce the bandwidth requirement for DNN
inference of IoT devices in MEC networks. The multi-task
learning method is used to balance the rate control and
inference tasks. The authors in [45] proposed a multi-task
federated learning based algorithm for personalized DNN
inference in MEC networks. In contrast, our study focuses
on how to design the distributed DNN inference scheme
with fine-grained model partitioning via multi-task learning
A3C approach under specific delay constraints, which can
be applied in realistic MEC environments.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the considered MEC architec-
ture, then detailly introduce the DNN task model and DNN
inference model at the IoT devices and ESs, respectively.
Finally, we formulate the total inference delay minimization
problem of distributed inference in MEC networks. All
symbols used in this paper are listed in Table 1.

3.1 MEC Architecture
As shown in Fig. 2, the architecture of the considered MEC
network for distributed DNN inference with fine-grained
model partitioning mainly includes two layers from the left
to the right: device layer and edge layer.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

4

TABLE 1
Summary of Important Notations

Notation Definition

N (N) The set (number) of ESs
T (t) The set (index) of timeline
V(t) The DNN inference task generated at time slot t
vm(t) m-th inference block of DNN model
Im(t) The input data size in bits of block vm(t)

cm(t), dm(t) The required number of CPU cycles and data size
a0m(t), anm(t) The indicator for whether DNN block vm(t) is

processed at IoT devices or ESn
f l The local computation capability of IoT devices
FC
n The computation capability of ESn

Rn
m(t) The achievable transmission rate from IoT device

to the associated ES
Rmax The transmission rate between different ESs
B The allocated bandwidth resource for each sub-

channel
pm The transmit power of IoT device
hm The channel power gain
N0 The spectral density of noise power
FC
n The computation capability of ESn

El
m(t) The energy consumption to complete DNN block

vm(t) of local inference
En

m(t) The energy consumption of transmitting the inter-
mediate feature map of adjacent DNN blocks

Lm(t) The total inference delay
Ltrans
m,n (t) The transmission delay of intermediate feature

map of adjacent DNN blocks vm(t) and vm+1(t)
Lcalc
m,n(t) The calculation delay for DNN block vm(t) at ESn
τm(t) The maximum tolerated delay for block vm(t)
X t,At The system state and action

rt(X t,At) The reward function
V

(
X t; θv

)
The state value function

H
(
π
(
At; θ

))
The entropy to encourage exploration

Gt The discounted accumulated reward
ψ, α The penalty term and training momentum
β The coefficient used to balance the total inference

delay and penalty term
θ The gradients of the loss function
η, γ The learning rate and discount factor

The device layer is mainly composed of different types
of IoT devices (e.g., cameras, smartphones, smartpads and
wearable devices) and these IoT devices are randomly dis-
tributed in different geographic locations through wireless
connections to communicate with the ESs. These IoT de-
vices usually have limited computing resources and can
frequently generate computation-intensive DNN inference
tasks with advanced services (e.g., virtual/augmented re-
ality applications). These resource-demanding DNN infer-
ence tasks executed in resource-constrained IoT devices is
difficult to meet real-time requirements. Therefore, we can
partition these DNN inference tasks by dividing them into
several DNN blocks and complete the distributed DNN in-
ference process through edge-device collaboration. In actual
MEC networks, we can use containerization and virtualiza-
tion technologies to deploy different DNN inference tasks in
independent containers and virtual machines to ensure the
stability of the distributed inference process.

The edge layer consists of a large number of ESs located
at the network edges close to the IoT devices. These ESs are
connected with each other by wired links (e.g., Industrial
Ethernet and Optical Fiber). The ESs can adopt the fine-

IoT Device

Local Inference

Edge Server 1

Edge Inference

Transmission

Model

partitioning

Controller

…

IoT Device

Local Inference

IoT Device

Local Inference

Edge Server 2

Edge Inference

Transmission

Edge Server N

Edge Inference

Transmission

DRL for

generating model

partitioning policy

Intermediate

feature map

transmission

Fig. 2. Topology of distributed DNN inference with fine-grained model
partitioning in MEC networks.

grained model partitioning mechanism to divide the entire
DNN model into multiple suitable DNN blocks, and then
assign these DNN blocks to IoT devices and ES for dis-
tributed execution according to the computing and storage
capabilities of the edge devices and network conditions.
Specifically, each ES and IoT device can execute a partial
DNN model. When the inference process of the previous
DNN block is completed, it will transmit the intermediate
feature map to the ESs or IoT devices where the next DNN
block is located. The device layer and edge layer are cooper-
ative to build a stable distributed DNN inference framework
through the intelligent model partitioning controller.

3.2 DNN Task Model

In particular, we consider the scenario of MEC networks
consisting of N ESs (denoted by N = {ES1,ES2, ...,ESN})
and several IoT devices. Each IoT device is randomly dis-
tributed within the service area of the ESs and connects with
ES via wireless links (e.g., 5G and WiFi). The ESs can provide
distributed DNN inference services for IoT devices. Aiming
to capture the distributed DNN inference process more
effectively, we assume that the MEC networks operate in a
slotted manner and the timeline set T = {1, 2, ..., t, ..., T} is
equally divided into several time slots. Each time slot has a
reasonable time span, which can be determined by DNN in-
ference task generation patterns and system measurement.

The DNN inference task (e.g., AlexNet, NiN and VGG)
consists of multiple DNN blocks and each block contains
several layers (e.g., convolutional (conv) layer, pooling layer
or fully connected (FC) layer). We model the DNN in-
ference task as a sequential task graph, as shown in Fig.
3(a). Each vertex in the sequential task graph represents
a DNN inference block. Mathematically, the DNN infer-
ence task generated at time slot t can be expressed as
V(t) = {v1(t), v2(t), ..., vM (t)}, where vm(t) refers to m-
th inference block of DNN model and M is total number
of the blocks. Each block vm(t) can be characterized by
a two-tuple {cm(t), dm(t)}, where cm(t) is the required

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

5

a Representation of the DNN as a sequential task graph.

4()3()2()1() () ()
… …I I I
I I

Start
I

b Distributed inference with fine-grained model partitioning.

4()3()2()1() () ()… …
I I I I I

Start
I

IoT Device ESi ESjIoT Device

Result

… …

Fig. 3. Representation of DNN task graph and a case of distributed
inference with fine-grained model partitioning.

number of CPU cycles, dm(t) is the data size of DNN block
vm(t). Considering the real-time constraints of distributed
inference, we assume that each DNN block has a maximum
tolerable delay τm(t). Each edge in the sequential task graph
represents the input data of DNN block vm(t), which is the
output of preceding block vm−1(t). We define the input data
size in bits of block vm(t) as Im(t). Note that DNN block
vm(t) runs in serial order, therefore, the sequential DNN
inference task J(t) at time slot t can be expressed as

J(t) = {v1(t), ..., Im(t), vm(t), Im+1(t), ..., vM (t)}. (1)

In this paper, we adopt a fine-grained model partitioning
mechanism with multi-partition points. Denote set A =
{a0m(t), a1m(t), ..., aNm(t)|∀m ∈ M,∀t ∈ T } as DNN model
partitioning policy, where a0m(t), anm(t) ∈ (0, 1) indicates
whether DNN block vm(t) is processed at IoT devices or
ESn, respectively. Note that each DNN block can only be
executed in one IoT device or ES either, thus, the DNN
model partitioning policy can be constrained by

a0m(t) +
N∑
n=1

anm(t) = 1,∀m ∈M,∀t ∈ T . (2)

To better explain the fine-grained model partitioning mech-
anism with multi-partition points, Fig. 3(b) describes a case
of distributed DNN inference with fine-grained model par-
titioning. We have a DNN model that consists of several
DNN blocks. To improve scalability and enable efficient
distributed Inference, we intend to partition different DNN
blocks across multiple computing resources of IoT devices
and ESs for execution. First, we employ a block-wise model
partitioning approach, where we divide the entire DNN
model into separate multiple DNN blocks at each block
boundary. This allows us to distribute the computational
workload across multiple compute resources of ESs or IoT
devices. Each DNN block is responsible for executing the
calculation operations within its assigned layer. Image data
is the initial input of the DNN inference task. DNN block
v1(t) is executed at IoT device while v2(t), vM (t) is executed
at ESi, ESj at different layers of MEC networks. All DNN
blocks cooperate to produce the final inference result.

3.3 DNN Inference Model
In this section, we calculate the DNN inference delay and
energy consumption in terms of local inference at IoT de-
vices and edge inference at ESs, respectively.

1) Local Inference Model: local inference refers to execut-
ing DNN inference task on the IoT devices, and the delay
and energy consumption mainly comes from the local cal-
culation of DNN tasks. Denote f l as the local computation
capability of IoT devices. Therefore, the local inference delay
for DNN block vm(t) can be calculated as

Llm(t) =
cm(t)

f l
,∀m ∈M,∀t ∈ T . (3)

The energy consumption to complete DNN block vm(t) of
local inference at time slot t can be expressed as

Elm(t) = κ(f l)2cm(t),∀m ∈M,∀t ∈ T , (4)

in which κ = 10−26 is the coefficient of energy consumption,
which is associated with the chip architecture [46].

2) Edge Inference Model: edge inference needs to offload
these DNN blocks to different ESs for inference. The infer-
ence delay is composed of two aspects: transmission delay
and calculation delay. The transmission delay occurs at the
transmission of the intermediate feature map of adjacent
DNN blocks [47], [48]. We mainly calculate the transmission
delay in three forms when considering different inference
locations of adjacent DNN blocks. Hence, the transmission
delay of the intermediate feature map of adjacent DNN
blocks vm−1(t) and vm(t) can be calculated as

Ltransm (t) =



0,

Im(t)
Rn

m(t) ,∀m ∈M,∀n ∈ N ,

Im(t)
Rmax

,∀m ∈M.

(5)

where Rnm(t) = B log2

(
1 + pm|hm|2

N0B

)
is the achievable

transmission rate from IoT devices to the associated ES, B is
the allocated bandwidth resource for each subchannel, pm is
the transmit power of IoT device, hm represents the channel
power gain and N0 is the noise power spectral density,
Rmax is the transmission rate between different ESs. To
explain it, ”0” means that two adjacent DNN blocks vm−1(t)
and vm(t) are simultaneously processed at IoT devices or
offloaded to the same ES. ” Im(t)

Rn
m(t)” refers to that one of the

two adjacent DNN blocks is executed at IoT device locally,
and the other is offloaded to ES for inference. ” Im(t)

Rmax
” means

that two adjacent DNN blocks are executed at two different
ESs. Please note that I1(t) is the size of the original data.
In the image classification task, it represents the size of the
original image that needs to be recognized.

The calculation delay refers to the time consumption that
data input to the DNN block for calculations. Denote FCn as
the computation capability of ESn. Therefore, the calculation
delay for DNN block vm(t) at ESn can be expressed as

Lcalcm,n(t) =
cm(t)

FCn
,∀m ∈M,∀n ∈ N . (6)

In the edge inference model, we only consider the energy
consumption caused by transmitting the intermediate fea-
ture map of DNN blocks. We ignore the energy consumption

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

6

of the DNN blocks executed at the ESs, because the ESs can
be powered by some renewable energy (e.g., solar energy
and wind energy). Therefore, the energy consumption for
transmitting the intermediate feature map of adjacent DNN
blocks vm−1(t) and vm(t) can be calculated as

Enm(t) = pmL
trans
m,n (t). (7)

As mentioned earlier, the edge inference delay is mainly
composed of the transmission delay and calculation delay.
Therefore, the edge inference delay for DNN block vm(t)
can be calculated as

LOm,n(t) = Ltransm,n (t) + Lcalcm,n(t). (8)

Define l(·) as the judgment function to determine whether
the internal conditions are true. Furthermore, the total infer-
ence delay for DNN block vm(t) can be expressed as

Lm(t) = l(a0m(t) = 1)Llm(t) + l(anm(t) = 1)LOm,n(t). (9)

3.4 Problem Formulation

In the considered MEC networks, our target to minimize the
total inference delay of DNN tasks by optimizing the model
partitioning policy A = {a0m(t), a1m(t), ..., aNm(t)|∀m ∈
M,∀t ∈ T }. Therefore, the corresponding distributed DNN
inference optimization problem can be formulated as

P : min
A

T∑
t=1

M∑
m=1

Lm(t) (10a)

s.t. C1 : a0m(t) +
N∑
n=1

anm(t) = 1,∀m ∈M,∀t ∈ T , (10b)

C2 : Lm(t) ≤ τm(t),∀m ∈M, (10c)

C3 : a0m(t), a1m(t), ..., aNm(t) ∈ {0, 1},∀m ∈M,∀t ∈ T .
(10d)

Constraint C1 states that each DNN block can only be
executed at one IoT device or ES either. Constraint C2
restricts the DNN inference delay of each DNN block cannot
exceed the maximum tolerated delay τm(t). Constraint C3
means that the model partitioning policy of DNN is a 0-1
variable. The origin problemP is a non-convex optimization
problem, which is NP-hard. It is generally challenging to
solve by traditional optimization methods. Considering the
fact that massive IoT devices and huge number of system
parameters in the considered MEC networks, our goal is
to design a DRL-based approach to find a competitive sub-
optimal fine-grained model partitioning policy.

4 FRAMEWORK DESIGN

In this section, we present the multi-task learning based
A3C approach for solving the corresponding distributed
DNN inference problem in the considered MEC networks.
Specifically, we discuss the MDP formulation of system
state, action and reward design at first. Then, we explain
the feasibility of integrating the A3C algorithm with multi-
tasking learning. Finally, we provide the complexity analysis
of the proposed approach.

4.1 MDP Formulation

We model the formulated distributed DNN inference prob-
lem with fine-grained model partitioning as a MDP process.
Specifically, the MDP process consists of three key elements,
i.e., system state design, model partitioning action design
and system reward design.

1) System state design: at the beginning of each time slot,
the agents can observe the system state information, includ-
ing generated DNN inference task V(t) and the current state
of the IoT devices. Specifically, the state information xtm
can be defined as the set xtm = {cm(t), dm(t), Rnm(t)}, in
which cm(t), dm(t), Rnm(t) is the required number of CPU
cycles, the data size of DNN block and the achievable
transmission rate, respectively. Besides, we should consider
enough energy to complete distributed DNN inference for
each DNN block at the considered time slot. DenoteEr(t) as
the remaining energy before completing the DNN inference
task V(t) at time slot t, which can be calculated as

Er(t) = Emax −
t−1∑
i=1

M∑
m=1

(l(a0m(i) = 1)Elm(t)+

l(anm(i) = 1)Enm(t)).

(11)

The system state needs to contain all DNN blocks infor-
mation in the considered MEC networks, hence, we define
the whole system state as X t = (xt1, x

t
2, . . . , x

t
M , E

r(t)).
To explain it, remaining energy Er(t) can make the DRL
agent pay more attention to the energy consumption of
the inference process, so that the model partitioning action
generated by the agent can meet the remaining energy
guarantee in the considered MEC networks.

2) Model partitioning action design: After receiving the
system state information, the agent selects an appropri-
ate DNN model partitioning action for each DNN block.
The DNN model partitioning action of block vm(t) can be
described as am(t) = [a0m(t), a1m(t), ..., aNm(t)]. In multi-
task learning based DRL approach, we expand the output
layer into multiple branches to determine the DNN model
partitioning policy for each DNN block separately. Each
output unit makes the DNN model partitioning policy in-
dependently. Hence, the action space for distributed DNN
inference can be defined as At = [a1(t), a2(t), ..., aM (t)].

3) System reward design: when the DRL agent takes action
At under the current state X t, the system will transition
to the new state X t+1 and it will obtain an instantaneous
feedback reward rt(X t,At) from the environment. In this
paper, our target is to minimize the total inference delay
as much as possible, so the reward function is negatively
related to the objective function. Based on this rule, we
intend to design the reward function as the negative sum
of the total inference delay, which can be defined as

rt(X t,At) = −
M∑
m=1

Lm(t). (12)

Moreover, to guarantee each DNN task can be executed on
time under the specific delay constraints, we will add a
certain penalty term if the DNN inference task cannot be
completed within the specified time. The penalty term is
calculated as the difference between the DNN task inference

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

7

Environment

Experience

Replay Buffer

(Xt, At, Rt, Xt+1)
Mini batch

Sample

Actions

(Xt, At, Rt, Xt+1)

Worker 1

Actor 1

Critic

…

Actor M

Worker 2

Actor 1

Critic

…

Actor M

…

…… … …

Worker k

Actor 1

Critic

…

Actor M

A
ctio

n
 1

A
ctio

n
 M

Global Network

Actor 1 Critic… Actor M

Worker k

Actor 1

Actor M

Critic

Soft parameter sharing

…

…

Choose node

for block M

Choose node

for block 1

Shared Network Nodes Actor Network Nodes Critic Network Nodes

Multi-Task Learning based A3C Approach for Fine-grained Model Partitioning

Evaluate

current

strategy

IoT Device Edge Server

Transmission

Fig. 4. An overview of the proposed multi-task learning based A3C approach for fine-grained model partitioning in the considered MEC networks.

delay Lm(t) and the maximum tolerated delay τm(t). When
the DNN task inference delay is much greater than the
maximum tolerable delay τm(t), the value of the penalty
term will be larger. Then the system will try to update
the action to ensure a larger value of the reward function.
Hence, the penalty term can be calculated as

ψ =
M∑
m=1

max{Lm(t)− τm(t), 0}, (13)

To this end, taking the total inference delay and excess
penalty term of DNN inference tasks into consideration, the
reward function rt(X t,At) can be rewritten as

rt(X t,At) = −(
M∑
m=1

Lm(t) + βψ), (14)

where β is the coefficient used to balance the total inference
delay and penalty term. Intuitively, the system reward is
always negative in the considered MEC networks.

4.2 Asynchronous Advantage Actor-Critic
A3C agent interacts with the MEC environment in multiple
threads manner. Specifically, each thread aggregates the
learned model weights in a central parameter server [49]–
[51]. In the beginning, the central parameter server sends the
parameters to worker nodes. Then, multiple worker nodes

optimize the network and learn simultaneously via asyn-
chronous gradient descent. After computing the gradient,
the work nodes send their own updated parameters to the
central parameters server for aggregation. A3C algorithm
has significant advantages over the traditional AC algo-
rithm. A3C uses asynchronous training. Multiple threads
explore the environment independently at the same time,
which improves sample efficiency and makes training faster.
Besides, A3C encourages exploration, utilizes parallelism to
achieve fast training, and effectively separates the policy
and value network to improve stability.

At time slot t, system state X t will be served as the input
of the A3C approach. The actor-network receives the input
of the system state X t and generates a corresponding DNN
model partitioning action At. Meanwhile, an instantaneous
reward rt(X t,At) will be feedback to optimize the model
partitioning policy. After that, the critic-network evaluates
the performance of the actor-network based on the gener-
ated action and guides the actor-network in the next stage.
Thus, the state value function of the A3C approach can be
calculated as

V
(
X t; θv

)
= E

[
Gt | X = X t, π

]
= E

[∞∑
k=0

γkrt+k | X = X t, π
]
,

(15)

in which Gt =
∑∞
k=0 γ

krt+k is the accumulated discounted

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

8

reward of state X t, γ is the discount factor between the
value of [0, 1]. The discount factor is used to measure how
future rewards can influence the current state value.

A3C approach uses the k-step method to update the
system reward. The policy and value function is updated
until the terminal system state or after maximum step tmax
actions, which can be given by

Rt =
k−1∑
i=0

γirt+i + γkV
(
X t+k; θv

)
, (16)

where k is upper-bounded constrained by tmax.
Similar to actor-critic method, to reduce the variance,

the A3C approach also adopts the advantage function to
enhance the learning capacity. Its formula as

A
(
X t,At; θ, θv

)
= Rt − V

(
X t; θv

)
, (17)

where Rt is the real reward and V (X t; θv) is the estimated
state value, θ and θv are the parameters of actor and critic-
network, respectively. Based on the advantage function, the
loss function of actor-network can be expressed as

fπ(θ) = log π
(
At | X t; θ

) (
Rt − V

(
At; θv

))
+βH

(
π
(
At; θ

))
,

(18)

in which H (π (At; θ)) is the entropy to encourage explo-
ration, β is the hyperparameter that is used to control the
strength of entropy regularization term and facilitates the
trade-off between exploitation and exploration. Similarly,
the loss function of the critic-network can be given by

fv(θv) =
(
Rt − V

(
X t; θv

))2
, (19)

which can be used to update the value function V (X t; θv).

4.3 Multi-Task Learning based Approach
A3C is a DRL algorithm primarily designed to train a single
agent for solving specific tasks. However, practical scenar-
ios often necessitate the simultaneous handling of multi-
ple interrelated tasks. The extension of multi-task learn-
ing based A3C can support agents to exchange acquired
policies and experiences among various tasks. This sharing
mechanism enhances the algorithm’s generalization capabil-
ities, reduces data requirements, and facilitates knowledge
transfer between tasks. Multi-task learning based A3C can
improve performance by sharing information, so that the ex-
perience between agents can complement each other. Multi-
task learning has a faster inference speed. In this paper, we
integrate the advantages of multi-task learning and DRL
to form a multi-task learning based A3C framework. An
overview of the proposed multi-task learning based A3C
approach can be shown in Fig. 4.

Particularly, we expand the A3C approach into a multi-
task learning manner. We integrate the hidden layer of
the actor-network and critic-network into a soft parameter
shared layer. In this manner, the experience of each agent
can be indirectly obtained by other agents. The reduction of
neural network parameters also reduces the training time.
Since the output of each actor-network is the policy for
each specific DNN block, we need to expand the output
layer of actor-network into M branches that correspond to
M DNN blocks. Meanwhile, the output dimension of each

Algorithm 1: Multi-Task Learning based A3C Ap-
proach for Fine-grained Model Partitioning.

1 Initialize: initialize the actor-network and
critic-network with parameters θ = {θ1, θ2, ..., θM}
and θv , respectively;

2 while Episode is not terminated do
3 for each work node do
4 Initialize the gradients of global agent dθ = 0

and dθv = 0, respectively:
5 Synchronous parameters of each worker node

with global parameters θ′ = θ, θ′v = θv ;
6 end
7 for t in the set T = {1, 2, 3, ..., T} do
8 Get the system state X t from environment;
9 Perform action At under the policy π (At|θ′);

10 Obtain reward rt(X t,At) according to Eq.
(14) and new state At+1;

11 Get the estimated value from critic-network;
12 Store the tuple (X t,At, rt,At+1) into replay

memory D;
13 end
14 Randomly sample a minibatch from D;
15 Update the model parameters via policy gradient

according to the loss function defined in (21);
16 end

branch of actor-network is determined by the size of DNN
model partitioning action space. The output of the critic-
network is the evaluation value of the current state, we
can use only one critic-network to calculate the state value
function. Therefore, the proposed multi-task learning based
A3C approach has M + 1 branches to generate the DNN
model partitioning policy for distributed DNN inference.

Correspondingly, the loss function of proposed multi-
task learning based A3C approach can be expressed as

f(θ1, θ2, ..., θm, θv) =

∑M
i=1 fπ(θi)

M
+ fv(θv). (20)

Meanwhile, the gradient descent formula to update the loss
function fπ(θ) of actor-network can be expressed as

Oθfπ(θ) = Oθ log π
(
At | X t; θ

) (
Rt − V

(
At; θv

))
+βOθH

(
π
(
At; θ

))
.

(21)

Similarly, the gradient descent formula for updating the loss
function of critic-network can be given by

Oθvfv(θv) = 2
(
Rt − V

(
X t; θv

))
OθvV

(
X t; θv

)
, (22)

We minimized the loss function by adopting the RMSProp
algorithm, which has been widely used in many DL scenar-
ios. Then, the estimate of the gradient under the RMSProp
strategy can be expressed as

g = αg + (1− α)∆θ2, (23)

in which α is the coefficient of training momentum and θ
is the accumulated gradients of the loss function. Based on
the g just obtained, the RMSProp strategy can be updated
according to the following formula as

θ ← θ − η ∆θ√
g + ε

, (24)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

9

AlexNet

Input

Output

Activation

Max

ConvFC

ResNet32

NiN VGG16

Block-wise Model Partitioning

Fig. 5. Four well-known DNN models for the experiment in the consid-
ered MEC networks: Alexnet, ResNet32, NiN and VGG16.

where coefficient η represents the learning rate, and ε is a
tiny small positive number more than zero. The detail of
the multi-task learning based A3C approach for fine-grained
model partitioning is shown in Algorithm 1.

4.4 Complexity Analysis

The computational complexity of the proposed multi-task
learning based A3C approach mainly relies on network
structure and the number of neurons. Network structure
mainly includes a shared layer, actor-network with M
branches, and a critic-network. Furthermore, the computa-
tion of the shared layer can be calculated as the product
of the number of neurons in each layer and the number
of neural network layers. Denote nsharex as the number of
neurons at the x-th layer at the shared layer. hence, the com-
putation complexity is O(

∑X−1
x=0 n

share
x nsharex+1), where X is

the number of the fully connected layer in the shared layer.
Similarly, we can obtain the computation complexity of each
actor-network and critic-network as O(

∑Y−1
y=0 n

actor
y nactory+1)

and O(
∑Z−1
z=0 n

critic
z ncriticz+1), where Y and Z is the number

of the fully connected layer at actor-network and critic-
network, respectively. In the training phase, the proposed
approach incorporates the parameter updating of all layers,
so the computation complexity is O(

∑X−1
x=0 n

share
x nsharex+1 +

M ·
∑Y−1
y=0 n

actor
y nactory+1 +

∑Z−1
z=0 n

critic
z ncriticz+1).

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

The inference process uses a server with Intel(R) Xeon(R)
Silver 4214 2.20GHz processor, 24GB of video memory
GeForce RTX 3090 and RTX 2080Ti with 12GB memory and
a Windows with Intel(R) Core(TM) i7-9700 CPU @3.00GHz
(8CPUs), 16384MB RAM. The edge servers are distributed
randomly in the considered MEC network.
Parameter Settings. We evaluate the performance of dis-
tributed DNN inference with fine-grained model partition-
ing through extensive experiments on MEC environments.
We consider that the MEC network is composed of [2, 9] ESs.
Each ES can serve the maximum coverage with a radius
of 750 meters. The achievable transmission rate from IoT
devices to the associated ES is set in the range of [0.8, 2]
MB/s. At the beginning of each time slot, each IoT device
generates DNN inference tasks and each DNN task consists
of several DNN blocks. The size of the DNN block is based

0 500 1000 1500 2000 2500 3000

Episode

-20.5

-20

-19.5

-19

-18.5

-18

-17.5

A
v
e
ra

g
e
 R

e
w

a
rd

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

Fig. 6. Convergence of different algorithms with the default setting in the
considered MEC networks.

on the model parameter size. The maximum tolerated delay
τm(t) of each block is set in [1, 7] seconds. Besides, we
simulate T = 600 time slots and the default batchsize is
set to 32. The default learning rate of actor-network and
critic-network is both set as 0.01. The DNN task released
rates are set in the range of [30, 110]/s. The probability of
random exploration is decreasing from 1 to 0.01 gradually.
The discount factor is set to 0.95.

DNN Models and Dataset. We employ four well-known
DNN models for the experiments: Alexnet, ResNet32, NiN
and VGG16, as shown in Fig. 5. These four DNN models
have been widely benchmarked in the DL community. In
this paper, we employ a block-wise partitioning approach,
where we divide the entire DNN model into separate mul-
tiple DNN blocks at each block boundary. A feasible model
partitioning method of VGG16 is shown at the lower right
corner of Fig. 5. In terms of dataset, we use CIFAR10 as
the standard dataset. CIFAR-10 is a widely acknowledged
dataset in computer vision, which consists of 60,000 32x32
color images in 10 classes. Each class has 6,000 images. The
dataset is divided into a training set with 50,000 images and
a test set with 10,000 images for distributed DNN inference.

Performance Metrics. To evaluate the effectiveness of dis-
tributed DNN inference and the proposed approach, we
use three common performance metrics in the considered
MEC networks as: 1) Total Inference Delay, including local
inference delay and edge inference delay two parts; 2) Edge
Inference Delay, denoting the inference delay of executing
DNN blocks at the selected ESs; 3) Local Inference Delay,
denoting the delay of executing DNN blocks at IoT devices.

Baseline Schemes. We compare the proposed approach
with the following five baseline schemes as: 1) A3C [52]: a
deep reinforcement learning approach to address the same
case in this paper; 2) Distributed DQN [53]: we use the
distributed DQN algorithm to partition DNN blocks; 3)
Greedy [54]: each DNN block selects the ES with a lower load
for DNN inference; 4) Average Partitioning of DNN Inference
(APDI): all DNN blocks are equally partitioned to the ESs; 5)
Random Partitioning of DNN Inference (RPDI): all DNN blocks
are inferenced at the IoT devices and ESs randomly.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

10

0 500 1000 1500 2000 2500 3000

Episode

-19.4

-19.2

-19

-18.8

-18.6

-18.4

-18.2

-18

-17.8

A
v
e

ra
g

e
 R

e
w

a
rd

10
3

lr = 0.01,lr
v
 = 0.01

lr = 0.001,lr
v
 = 0.001

lr = 0.001,lr
v
 = 0.01

lr = 0.01,lr
v
 = 0.001

(a) Average Reward.

0 500 1000 1500 2000 2500 3000

Episode

-19.4

-19.2

-19

-18.8

-18.6

-18.4

-18.2

-18

-17.8

A
v
e

ra
g

e
 R

e
w

a
rd

10
3

Worker Node = 8

Worker Node = 6

Worker Node = 4

Worker Node = 2

(b) Average Reward.

0 500 1000 1500 2000 2500 3000

Episode

-19.6

-19.4

-19.2

-19

-18.8

-18.6

-18.4

-18.2

-18

-17.8

A
v
e

ra
g

e
 R

e
w

a
rd

10
3

Batchsize = 64

Batchsize = 32

Batchsize = 16

Batchsize = 8

(c) Average Reward.

Fig. 7. The average reward versus different learning rates, work nodes and batchsize at different episodes in the considered MEC networks.

2 3 4 5 6 7 8 9

Number of ESs

14

16

18

20

22

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(a) Total Inference Delay.

2 3 4 5 6 7 8 9

Number of ESs

9

10

11

12

13

14

15

E
d
g
e
 I
n
fe

re
n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(b) Edge Inference Delay.

2 3 4 5 6 7 8 9

Number of ESs

4

4.5

5

5.5

6

6.5

7

L
o
c
a
l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(c) Local Inference Delay.

Fig. 8. The total inference delay, edge inference delay and local inference delay versus different numbers of ESs in the considered MEC networks
(The number of DNN blocks is set as 6 and the DNN task released rate is set as 60/s).

5 10 15 20

Number of DNN Blocks

5

10

15

20

25

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(a) Total Inference Delay.

5 10 15 20

Number of DNN Blocks

4

6

8

10

12

14

16

18

E
d
g
e
 I
n
fe

re
n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(b) Edge Inference Delay.

5 10 15 20

Number of DNN Blocks

1

2

3

4

5

6

7

8

L
o
c
a
l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(c) Local Inference Delay.

Fig. 9. The total inference delay, edge inference delay and local inference delay versus different numbers of DNN blocks in the considered MEC
networks (The number of ESs is set as 4 and the DNN task released rate is set as 60/s).

5.2 Algorithm Convergence

Fig. 6 shows the convergence curves of different algorithms
with the default setting in the considered MEC networks.
The solid curves and shaded areas are the mean and stan-
dard deviation of the average rewards, respectively. We can
clearly observe that the reward value of the proposed ap-
proach increases with the number of iterations. Specifically,
the reward value of the proposed approach converges to
−18.30×103, while the reward value of A3C and distributed
DQN algorithm converges to−18.49×103 and−18.56×103,
respectively. The reward value of greedy, APDI and RPDI
algorithms remain almost unchanged as the number of iter-
ations increases. This is because the three baseline schemes
lack the learning ability to perform adaptive fine-grained
DNN model partitioning. In terms of convergence speed,
the proposed approach starts to converge gradually at 400

episodes, while the distributed DQN starts to converge at
about 2000 episodes. To explain it, the proposed multi-task
learning based A3C approach can softly share some network
parameters and system information can be better recog-
nized. The distributed inference process between adjacent
DNN blocks can be efficiently coordinated.

5.3 Impacts of Different Hyperparameter Settings
In Fig. 7, we investigate the impacts of average reward of
the proposed approach in terms of different learning rates,
work nodes and batchsize at different episodes.

Fig. 7(a) illustrates the learning efficiency of the pro-
posed approach in the considered MEC networks. We con-
duct multiple experiments and further display the reward
in terms of different learning rates of actor-network and
critic-network. Specifically, we alternately set the learning

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

11

40 60 80 100

DNN Task Released Rates (/s)

10

20

30

40

50

60

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(a) Total Inference Delay.

40 60 80 100

DNN Task Released Rates (/s)

5

10

15

20

25

30

35

40

E
d
g
e
 I
n
fe

re
n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(b) Edge Inference Delay.

40 60 80 100

DNN Task Released Rates (/s)

0

5

10

15

20

L
o
c
a
l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(c) Local Inference Delay.

Fig. 10. The total inference delay, edge inference delay and local inference delay versus different DNN task released rates in the considered MEC
networks (The number of ESs is set as 4 and the number of DNN blocks is set as 6).

2 3 4 5 6 7 8 9

Number of ESs

35.5

36

36.5

37

37.5

38

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(a) Total Inference Delay.

5 10 15 20

Number of DNN Blocks

36.5

37

37.5

38

38.5

39
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(b) Edge Inference Delay.

50 60 70 80 90 100 110

DNN Task Released Rates (/s)

30

35

40

45

50

55

60

65

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(c) Local Inference Delay.

Fig. 11. The energy consumption versus different number of ESs, DNN blocks, different DNN task released rates in the considered MEC networks.

rates of the actor-network and critic-network as 0.01 and
0.001, respectively. It can be easily observed that the con-
vergence performance of the proposed approach is better
when both the actor-network and critic-network learning
rates are set as 0.01 (i.e., lr = 0.01, lrv = 0.01). This is
because a relatively small learning rate can easily cause
the network to fall into a local optimal. Fig. 7(b) compares
the performance of the reward versus the number of work
nodes at different episodes. We can clearly see that the
speed of the convergence curve becomes faster as the work
node increases. Specifically, when the work node is 8, the
convergence of the proposed framework is fastest compared
with the other situations. Fig. 7(c) shows the performance of
different batchsize of the proposed approach. We find that
the trend of the convergence curve rises at first and then
remains almost unchanged. When the batchsize is set to 64,
the performance of the proposed approach works better.

5.4 Impacts of Different Numbers of ESs, DNN Blocks
and DNN Task Released Rates
In this subsection, we investigate the impact of different
numbers of ESs, DNN blocks and DNN task released rates.
Specifically, DNN task released rates refer to the number of
DNN inference tasks generated per time slot. We use the
DNN model of VGG16 for the experiments.

Fig. 8 shows the performance of total inference delay,
edge inference delay and local inference delay versus dif-
ferent numbers of ESs in the considered MEC networks.
The number of DNN blocks is set as 6 and DNN task
released rates is set as 60/s. Fig. 8(a) shows that the pro-
posed approach has an excellent performance in reducing

the total inference delay compared with the other five
baseline schemes. Especially when the number of ESs is
equal to 6, it can achieve up to 4.61%, 6.88%, and 7.53%
improvements compared with the A3C, distributed DQN
and greedy baseline schemes, respectively. This is because as
the number of available ESs increases, each DNN block has
multiple optional ESs and the calculation delay at each ES
decreases significantly. This is because the proposed multi-
task learning based A3C approach can reduce the edge
inference latency more effectively. Fig. 8(b) evaluates the
performance in terms of the edge inference delay. We can
easily observe that the gap between different algorithms
becomes larger. From Fig. 8(c), the proposed multi-task
learning based A3C approach can reduce 8.40%, 6.21%,
6.48% and 4.12% of the local inference delay at the number
of ESs in [3, 4, 6, 7] compared with the distributed DQN
baseline scheme, respectively.

Fig. 9 shows the impacts of different numbers of DNN
blocks in the considered MEC networks. The number of ESs
is set as 4 and DNN task released rates is set as 60/s. From
Fig. 9(a), we can clearly observe that the total inference delay
gradually decreases with the number of DNN blocks. This is
because different DNN blocks can be partitioned to different
ESs for inference, which can significantly improve available
resource utilization in the considered MEC networks. Fig.
9(b) shows the trend of edge inference delay with the
number of DNN blocks, the proposed approach can achieve
7.25%, 10.52%, 15.61% edge inference delay reduction when
the number of DNN blocks set as 3, 6, 9 compared with the
distributed DQN baseline scheme, respectively. From Fig.
9(c), the proposed multi-task learning based A3C approach

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

12

1 3 5 7

Maximum Tolerated Delay (s)

0

5

10

15

20

25

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(a) Total Inference Delay.

1 3 5 7

Maximum Tolerated Delay (s)

0

5

10

15

20

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(b) Edge Inference Delay.

1 3 5 7

Maximum Tolerated Delay (s)

0

1

2

3

4

5

T
o
ta

l
In

fe
re

n
c
e
 D

e
la

y
 (

s
)

10
3

APDI

RPDI

Greedy

Distributed DQN

A3C

Proposed

(c) Local Inference Delay.

Fig. 12. The total inference delay, edge inference delay and local inference delay versus different maximum tolerated delay in the considered MEC
networks (The number of ESs is set as 4, the number of DNN blocks is set as 6 and DNN task released rate is set as 60/s).

2 4 6 8 10

Link Capacity (Mbps)

0

5

10

15

20

T
o

ta
l
In

fe
re

n
c
e

 D
e

la
y
 (

s
)

10
3

NiN

Alexnet

VGG16

ResNet32

Fig. 13. The total inference delay versus different link capacity with
different DNN models in the considered MEC networks.

can achieve 9.45%, 10.77% local inference delay reduction
when the number of DNN blocks is set as 15, 18 compared
with the greedy algorithm baseline scheme, respectively.

Fig. 10 shows the performance of different DNN task
released rates in terms of the total inference delay, edge
inference delay and local inference delay. The number of
ESs is set as 4 and number of DNN blocks is set as 6.
From Fig. 10(a), it can be easily observed that as the release
rate increases, the performance gap between the proposed
approach and other baseline schemes becomes larger. When
the DNN task release rate is set as 50, the performance
gap is the smallest. This is because the proposed multi-
task learning based A3C approach can softly share network
parameters and the model partitioning policy can be deter-
mined reasonably. Fig. 10(b) and Fig. 10(c) display the edge
inference delay and local inference delay at different DNN
task release rates, respectively. We can also observe that edge
inference delay and local inference delay also maintain the
growth trend. The performance gap of the local inference
delay and edge inference delay fluctuates in a similar small
range. Therefore, the proposed multi-task learning based
A3C approach has better performance in terms of different
DNN task released rates in the considered MEC networks.

5.5 Energy Consumption Under Different Numbers of
ESs, DNN Blocks and DNN Task Released Rates
In this subsection, we investigate the energy consumption
of VGG16 under the conditions of different numbers of ESs,
DNN blocks and different DNN task released rates.

Fig. 11 shows the energy consumption versus different
number of ESs, DNN blocks, different DNN task released
rates in the considered MEC networks, respectively. In Fig.
11(a), we set the number of ESs in the range of [2, 9] and
study the energy consumption of DNN inference. We can
observe that as the number of ESs increases, the energy
consumption gradually decreases. This is because as the
number of ESs increases, the proposed multi-task learning
based A3C approach can offload some DNN blocks to more
suitable ES, which can significantly reduce energy consump-
tion. From Fig. 11(b), we can observe that as the number of
DNN blocks increases, the energy consumption increases
slightly. This is because the increase of DNN blocks results
in more transmission of intermediate feature maps, which
results in increased energy consumption to a certain extent.
Fig. 11(c) shows the energy consumption of different DNN
task released rates in the considered MEC networks. We
can clearly observe that as the DNN task released rates
increases, the energy consumption increases more signifi-
cantly. To explain it, a higher DNN task released rates means
more DNN inference tasks will be generated per time slot.
These DNN inference tasks will be processed in the MEC
network in an edge-cloud collaboration manner, resulting
in higher energy consumption. Overall, we can find that
our proposed algorithm has advantages in reducing energy
consumption compared to other five baseline schemes.

5.6 Impacts of Different Maximum Tolerated Delay and
Link Capacity
In this subsection, we investigate the impact of different
maximum tolerated delay of DNN inference tasks and link
capacity in terms of the total inference delay, edge inference
delay and local inference delay.

Fig. 12 shows the performance of different maximum tol-
erated delays in the considered MEC networks. The number
of ESs is set as 4, the number of DNN blocks is set as 6
and DNN task released rates is set as 60/s. From Fig. 12(a),
we can easily observe that the total inference delay first
decreases and then increases with the maximum tolerated
delay. To explain it, when the maximum tolerated delay

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

13

is set too small, the penalty term becomes large leading
smaller reward. Fig. 12(b) shows that the proposed multi-
task learning based A3C approach has a less edge inference
delay. Specifically, the proposed approach can achieve up
to 8.63%, 7.22%, and 7.28% performance improvements
compared with the A3C strategy, 9.59%, 10.85%, and 10.74%
performance improvements compared with the distributed
DQN strategy at the maximum tolerated delay set as 1s,
3s and 7s, respectively. Meanwhile, from Fig.12(c), the pro-
posed multi-task learning based A3C approach can achieve
up to 7.85%, 7.57%, and 7.20% performance improvements
compared with the greedy strategy at the maximum toler-
ated delay set as 1s, 3s and 5s, respectively.

Fig. 13 shows the impacts of the proposed multi-task
learning based A3C approach on reducing the total infer-
ence delay under different link capacity from IoT devices to
edge servers in the considered MEC networks. We conduct
the experiment with four different DNN models (i.e., NiN,
AlexNet, VGG16 and ResNet32). We can clearly find that the
total inference delay decreases gradually as the link capacity
increases. To explain it, this is because the increase of link
capacity that results in a decrease of transmission delay
between the ESs and IoT devices. In addition, we can find
that the ResNet32 model has a longer total inference delay
than other DNN models, and the total inference delay of
Alexnet and VGG16 is larger than that of NiN model. This
is because the model of Resnet32 is more complex, and a
large number of convolutional layers leads to more floating
point operations of total inference delay in the considered
MEC networks.

6 CONCLUSION

In this paper, we have investigated the problem of dis-
tributed DNN inference with fine-grained model partition-
ing under the collaboration of ESs and IoT devices in MEC
networks. Our target is to minimize the total inference delay
by optimizing the fine-grained model partitioning policy
with specific delay constraints. The problem is formulated
as a non-convex optimization problem, which is NP-hard.
To tackle this problem, we have proposed a multi-task
learning based A3C approach to find a competitive fine-
grained DNN model partitioning policy. Specifically, we
have combined shared layers via soft parameter sharing,
and expand the output layer into multiple branches to
determine the model partitioning policy for each DNN block
individually. The experimental results have demonstrated
that our approach achieves superior performance in reduc-
ing the total inference delay, edge inference delay and local
inference delay in the considered MEC networks. In future,
we plan to validate our proposed approach on a practical
testbed and further optimize the algorithm performance.

REFERENCES

[1] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence
for 6g: Vision, enabling technologies, and applications,” IEEE J.
Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Nov. 2021.

[2] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “Mec-assisted
immersive vr video streaming over terahertz wireless networks: A
deep reinforcement learning approach,” IEEE Internet of Things J.,
vol. 7, no. 10, pp. 9517–9529, Jun. 2020.

[3] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen,
“Distributed artificial intelligence empowered by end-edge-cloud
computing: A survey,” IEEE Commun. Surveys Tuts, vol. 25, no. 1,
pp. 591–624, Nov. 2022.

[4] Z. Liu, Z. Zhao, X. Wang, M. Dong, C. Qiu, and C. Zhang, “Toward
mobility-aware edge inference via model partition and service
migration,” in Proc. IEEE ICC, May 2023, pp. 3258–3263.

[5] J. Song, Z. Liu, X. Wang, C. Qiu, and X. Chen, “Adaptive and col-
laborative edge inference in task stream with latency constraint,”
in Proc. IEEE ICC, Jun. 2021, pp. 1–6.

[6] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture,
advances and challenges,” IEEE Commun. Surveys Tuts, vol. 22,
no. 4, pp. 2462–2488, Jul. 2020.

[7] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Commun. Surveys Tuts, vol. 23,
no. 4, pp. 2131–2165, Aug. 2021.

[8] S. Duan, F. Lyu, H. Wu, W. Chen, H. Lu, Z. Dong, and X. Shen,
“Moto: Mobility-aware online task offloading with adaptive load
balancing in small-cell mec,” IEEE Trans. Mobile Comput., Nov.
2022, doi:10.1109/TMC.2022.3220720.

[9] Z. Liu, J. Song, C. Qiu, X. Wang, X. Chen, Q. He, and H. Sheng,
“Hastening stream offloading of inference via multi-exit dnns in
mobile edge computing,” IEEE Trans. Mobi. Comp., Nov. 2022, doi:
10.1109/TMC.2022.3218724.

[10] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A compre-
hensive survey,” IEEE Commun. Surveys Tuts, vol. 22, no. 2, pp.
869–904, Jan. 2020.

[11] J. Na, H. Zhang, J. Lian, and B. Zhang, “Partitioning DNNs for
optimizing distributed inference performance on cooperative edge
devices: A genetic algorithm approach,” Applied Sciences, vol. 12,
no. 20, p. 10619, Oct. 2022.

[12] Z. Hao, G. Xu, Y. Luo, H. Hu, J. An, and S. Mao, “Multi-agent
collaborative inference via dnn decoupling: Intermediate feature
compression and edge learning,” IEEE Transactions on Mobile Com-
puting, Jun. 2022, doi: 10.1109/TMC.2022.3183098.

[13] Z. Liu, Q. Lan, and K. Huang, “Resource allocation for multiuser
edge inference with batching and early exiting,” IEEE J. Sel. Areas
Commun., vol. 41, no. 4, pp. 1186–1200, Feb. 2023.

[14] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in
deadline-aware mobile edge computing systems,” IEEE Internet of
Things J., vol. 6, no. 3, pp. 4854–4866, Oct. 2018.

[15] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput
maximization of delay-aware dnn inference in edge computing
by exploring dnn model partitioning and inference parallelism,”
IEEE Trans. Mobile Comput., 2021, doi: 10.1109/TMC.2021.3125949.

[16] Y. Su, W. Fan, L. Gao, L. Qiao, Y. Liu, and F. Wu, “Joint dnn parti-
tion and resource allocation optimization for energy-constrained
hierarchical edge-cloud systems,” IEEE Trans. Vehi. Tech., Nov.
2022, doi: 10.1109/TVT.2022.3219058.

[17] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in
edge computing,” in Proc. IEEE INFOCOM, Jun. 2019, pp. 2287–
2295.

[18] T. Zheng, J. Wan, J. Zhang, and C. Jiang, “Deep reinforcement
learning-based workload scheduling for edge computing,” Journal
of Cloud Computing, vol. 11, no. 1, pp. 1–13, Jan. 2022.

[19] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task parti-
tioning and offloading in dnn-task enabled mobile edge com-
puting networks,” IEEE Trans. Mobi. Comp., Sep. 2021, doi:
10.1109/TMC.2021.3114193.

[20] J.-A. Lim and Y. Kim, “Real-time dnn model partitioning for qoe
enhancement in mobile vision applications,” in Proc. IEEE SECON.
IEEE, Sep. 2022, pp. 407–415.

[21] H. Zhou, M. Li, N. Wang, G. Min, and J. Wu, “Accelerating deep
learning inference via model parallelism and partial computation
offloading,” IEEE Trans. Para. Dist. Sys., vol. 34, no. 2, pp. 475–488,
Nov. 2022.

[22] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu,
and G. Wu, “Energy-aware inference offloading for dnn-driven
applications in mobile edge clouds,” IEEE Trans. Para. and Dist.
Sys., vol. 32, no. 4, pp. 799–814, Apr. 2020.

[23] C. Deng, X. Fang, and X. Wang, “Uav-enabled mobile edge com-
puting for ai applications: Joint model decision, resource allocation
and trajectory optimization,” IEEE Internet of Things Journal, Feb.
2022, doi: 10.1109/JIOT.2022.3151619.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

14

[24] P. Ren, X. Qiao, Y. Huang, L. Liu, C. Pu, and S. Dustdar, “Fine-
grained elastic partitioning for distributed dnn towards mobile
web ar services in the 5g era,” IEEE Trans. Services Computing, Jul.
2021, doi: 10.1109/TSC.2021.3098816.

[25] Z. Zhang, Q. Li, L. Lu, D. Guo, and Y. Zhang, “Joint optimization
of the partition and scheduling of dnn tasks in computing and
network convergence,” IEEE Networking Letters, Mar. 2023, doi:
10.1109/TSC.2021.3098816.

[26] Y. Huang, X. Qiao, S. Dustdar, J. Zhang, and J. Li, “Toward decen-
tralized and collaborative deep learning inference for intelligent
iot devices,” IEEE Network, vol. 36, no. 1, pp. 59–68, Feb. 2022.

[27] Y. Wu, L. Zhang, Z. Gu, H. Lu, and S. Wan, “Edge-ai-driven frame-
work with efficient mobile network design for facial expression
recognition,” ACM Trans. Embedded Computing Systems, vol. 22,
no. 3, pp. 1–17, Apr. 2023.

[28] L. Chen, M. Yao, Y. Wu, and J. Wu, “Eecdn: Energy-efficient
cooperative dnn edge inference in wireless sensor networks,”
ACM Trans. Internet Technology, vol. 22, no. 4, pp. 1–30, Nov. 2022.

[29] F. Dong, H. Wang, D. Shen, Z. Huang, Q. He, J. Zhang, L. Wen,
and T. Zhang, “Multi-exit dnn inference acceleration based on
multi-dimensional optimization for edge intelligence,” IEEE Trans.
Mobile Comp., 2022, doi: 10.1109/TMC.2022.3172402.

[30] T. Kim, H. Park, Y. Jin, S.-s. Lee, and S. Lee, “Partition placement
and resource allocation for multiple dnn-based applications in
heterogeneous iot environments,” IEEE Internet of Things J., 2023,
doi: 10.1109/JIOT.2023.3235993.

[31] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement
learning-based optimal computing and caching in mobile edge
network,” IEEE J. Selected Areas in Commun., vol. 38, no. 10, pp.
2343–2355, Jun. 2020.

[32] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-
aware and energy-efficient computation offloading in mobile-edge
computing using deep reinforcement learning,” IEEE Trans. Cogn.
Commun. Netw., vol. 7, no. 3, pp. 881–892, Mar. 2021.

[33] T. Dong, Z. Zhuang, Q. Qi, J. Wang, H. Sun, F. R. Yu, T. Sun,
C. Zhou, and J. Liao, “Intelligent joint network slicing and routing
via gcn-powered multi-task deep reinforcement learning,” IEEE
Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 1269–1286, Dec. 2021.

[34] X. Chen, R. Proietti, C.-Y. Liu, and S. B. Yoo, “A multi-task-
learning-based transfer deep reinforcement learning design for
autonomic optical networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 9, pp. 2878–2889, Mar. 2021.

[35] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Trans. Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586–
5609, Mar. 2021.

[36] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 44, no. 7, pp. 3614–3633, Jan. 2021.

[37] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “Eosdnn: An efficient
offloading scheme for dnn inference acceleration in local-edge-
cloud collaborative environments,” IEEE Tran. Green Commun. and
Netw., vol. 6, no. 1, pp. 248–264, Sep. 2021.

[38] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge:
Cooperative dnn inference with adaptive workload partitioning
over heterogeneous edge devices,” IEEE/ACM Trans. Networking,
vol. 29, no. 2, pp. 595–608, Apr. 2020.

[39] W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, and
X. Shen, “Deep reinforcement learning based resource manage-
ment for dnn inference in industrial iot,” IEEE Trans. Vehi. Tech.,
vol. 70, no. 8, pp. 7605–7618, Aug. 2021.

[40] W. Fan, Z. Chen, Z. Hao, Y. Su, F. Wu, B. Tang, and Y. Liu, “Dnn
deployment, task offloading, and resource allocation for joint task
inference in iiot,” IEEE Trans. Indust. Inform., vol. 19, no. 2, pp.
1634–1646, Apr. 2022.

[41] T. Niu, Y. Teng, Z. Han, and P. Zou, “An adaptive device-edge
co-inference framework based on soft actor-critic,” in Proc. IEEE
WCNC, Apr. 2022, pp. 2571–2576.

[42] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-
guaranteed collaborative dnn inference in industrial iot via deep
reinforcement learning,” IEEE Trans. Indust. Inform., vol. 17, no. 7,
pp. 4988–4998, Aug. 2020.

[43] X. He, X. Wang, Z. Zhou, J. Wu, Z. Yang, and L. Thiele, “On-
device deep multi-task inference via multi-task zipping,” IEEE
Trans. Mobile Comput., 2021, doi: 10.1109/TMC.2021.3124306.

[44] J. Zhang, W. Zhang, and J. Xu, “Bandwidth-efficient multi-task ai

inference with dynamic task importance for the internet of things
in edge computing,” Comp. Netw., vol. 216, p. 109262, Oct. 2022.

[45] J. Mills, J. Hu, and G. Min, “Multi-task federated learning for
personalised deep neural networks in edge computing,” IEEE
Trans. Para. and Dist. Sys., vol. 33, no. 3, pp. 630–641, Jul. 2021.

[46] C. Sun, H. Li, X. Li, J. Wen, Q. Xiong, X. Wang, and V. C. Leung,
“Task offloading for end-edge-cloud orchestrated computing in
mobile networks,” in Proc. IEEE WCNC, Jun. 2020, pp. 1–6.

[47] J.-W. Chang, K.-W. Kang, and S.-J. Kang, “An energy-efficient
fpga-based deconvolutional neural networks accelerator for single
image super-resolution,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 30, no. 1, pp. 281–295, Dec. 2018.

[48] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco,
“Distributed inference acceleration with adaptive dnn partitioning
and offloading,” in Proc. IEEE INFOCOM. IEEE, Aug. 2020, pp.
854–863.

[49] B. Gu, M. Alazab, Z. Lin, X. Zhang, and J. Huang, “Ai-enabled
task offloading for improving quality of computational experience
in ultra dense networks,” ACM Trans. Internet Technology, vol. 22,
no. 3, pp. 1–17, Mar. 2022.

[50] J. Jiang, J. Guo, M. Khan, Y. Cui, and W. Lin, “Energy-saving
service offloading for the internet of medical things using deep
reinforcement learning,” ACM Trans. Sensor Networks, Aug. 2022.

[51] Z. Wang, M. Li, L. Zhao, H. Zhou, and N. Wang, “A3c-based com-
putation offloading and service caching in cloud-edge computing
networks,” in Proc. IEEE INFOCOM WKSHPS, May 2022, pp. 1–2.

[52] J. Zou, T. Hao, C. Yu, and H. Jin, “A3c-do: A regional resource
scheduling framework based on deep reinforcement learning in
edge scenario,” IEEE Trans. Comp., vol. 70, no. 2, pp. 228–239, Apr.
2020.

[53] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, “Smart manu-
facturing scheduling with edge computing using multiclass deep
q network,” IEEE Trans. Industrial Informatics, vol. 15, no. 7, pp.
4276–4284, Mar. 2019.

[54] H. Gauttam, K. Pattanaik, S. Bhadauria, G. Nain, and P. B. Prakash,
“An efficient dnn splitting scheme for edge-ai enabled smart man-
ufacturing,” Journal of Industrial Information Integration, p. 100481,
Aug. 2023, doi: https://doi.org/10.1016/j.jii.2023.100481.

Hui Li (S’20) received the B.S. degree from
Northeast Agricultural University, Harbin, China,
in 2019. He is currently a Ph.D. student with
the School of Big Data & Software Engineer-
ing, Chongqing University, Chongqing, China.
His current research interests include edge com-
puting and caching, and edge intelligence.

Xiuhua Li (S’12, M’19) received his both B.S.
degree and M.S. degree from Harbin Institute of
Technology, China, in 2011 and 2013, respec-
tively, and his Ph.D. degree from the Department
of Electrical and Computer Engineering, Univer-
sity of British Columbia, Vancouver, Canada, in
2018. He is currently a tenure-track assistant
professor with the School of Big Data & Software
Engineering, Chongqing University, Chongqing,
China, and also a member of the Haihe Lab-
oratory of ITAI. He is the Head of the Institute

of Intelligent Software and Services Computing associated with the
Key Laboratory of Dependable Service Computing in Cyber Physical
Society, Chongqing University, Education Ministry, China. Focusing on
the research of edge computing and caching, and edge intelligence, he
has published more than 90 technical papers in IEEE JSAC, TCC, TWC,
IoTJ, TNSE, TNSM, ICC, GLOBECOM and so on.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

15

Qilin Fan (M’19) is currently an Associate Pro-
fessor in the School of Big Data and Software
Engineering, Chongqing University, Chongqing,
China. She received the B.E. degree in the Col-
lege of Software Engineering, Sichuan Univer-
sity, Chengdu, China, in 2011, and the Ph.D.
degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Bei-
jing, China, in 2017. Her research interests in-
clude network optimization, mobile edge com-
puting and caching, network virtualization and

machine learning.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree from
Huazhong University of Science and Tech-
nology, China, in 2010. He is currently a
full professor. His research interests include
edge computing, cloud computing, software en-
gineering, and service computing. More de-
tails about his research can be found at
https://sites.google.com/site/heqiang/.

Xiaofei Wang (S’06, M’13, SM’18) received the
B.S. degree from Huazhong University of Sci-
ence and Technology, China, and received M.S.
and Ph.D. degrees from Seoul National Univer-
sity, Seoul, South Korea. He was a Postdoctoral
Fellow with The University of British Columbia,
Vancouver, Canada, from 2014 to 2016. He is
currently a Professor with the College of Intelli-
gence and Computing, Tianjin University, Tian-
jin, China. Focusing on the research of edge
computing, edge intelligence, and edge sys-

tems, he has published more than 150 technical papers in IEEE JSAC,
TCC, ToN, TWC, IoTJ, COMST, TMM, INFOCOM, ICDCS and so on.
In 2017, he was the recipient of the “IEEE ComSoc Fred W. Ellersick
Prize”, and in 2022, he received the “IEEE ComSoc Asia-Pacific Out-
standing Paper Award”.

Victor C. M. Leung (S’75, M’89, SM’97, F’03,
LF’21) is a Distinguished Professor of Computer
Science and Software Engineering at Shenzhen
University, China. He is also an Emeritus Pro-
fessor of Electrical and Computer Engineering
and Director of the Laboratory for Wireless Net-
works and Mobile Systems at the University of
British Columbia (UBC), Canada. His research
is in the broad areas of wireless networks and
mobile systems, and he has published widely in
these areas. Dr. Leung is serving on the editorial

boards of the IEEE Transactions on Green Communications and Net-
working, IEEE Transactions on Cloud Computing, IEEE Transactions
on Computational Social Systems, IEEE Access, IEEE Network, and
several other journals. He received the 1977 APEBC Gold Medal, 1977-
1981 NSERC Postgraduate Scholarships, IEEE Vancouver Section
Centennial Award, 2011 UBC Killam Research Prize, 2017 Canadian
Award for Telecommunications Research, 2018 IEEE TCGCC Distin-
guished Technical Achievement Recognition Award, and 2018 ACM
MSWiM Reginald Fessenden Award. He co-authored papers that won
the 2017 IEEE ComSoc Fred W. Ellersick Prize, 2017 IEEE Systems
Journal Best Paper Award, 2018 IEEE CSIM Best Journal Paper Award,
and 2019 IEEE TCGCC Best Journal Paper Award. He is a Life Fellow
of IEEE, and a Fellow of the Royal Society of Canada (Academy of
Science), Canadian Academy of Engineering, and Engineering Institute
of Canada. He is named in the current Clarivate Analytics list of “Highly
Cited Researchers”.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3357874

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:50:30 UTC from IEEE Xplore. Restrictions apply.

