
310 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

Transfer Learning for Real-Time Surface Defect
Detection With Multi-Access Edge-Cloud

Computing Networks
Hui Li , Student Member, IEEE, Xiuhua Li , Member, IEEE, Qilin Fan , Member, IEEE, Qingyu Xiong,

Xiaofei Wang , Senior Member, IEEE, and Victor C. M. Leung , Life Fellow, IEEE

Abstract—The development of deep learning and edge com-
puting provides rapid detection capability for surface defects.
However, components produced in actual industrial manufactur-
ing environments often have tiny surface defects and training
data for each specific defect type is limited. Meanwhile, network
resources at the edge of industrial networks are difficult to guar-
antee. It is challenging to train a proper surface defect detection
model for each specific surface defect type and provide a real-
time surface defect detection service. To address the challenge,
in this paper, we propose a real-time surface defect detection
framework based on transfer learning with multi-access edge-
cloud computing (MEC) networks. Furthermore, we improve
the original YOLO-v5s framework by introducing the spatial
and channel attention mechanism, and adding an additional
detection head to enhance the detection ability on tiny sur-
face defects. Evaluation results demonstrate that the proposed
framework has superior performance in terms of improving
detection accuracy and reducing detection delay in the considered
MEC network.

Index Terms—Surface defect detection, multi-access edge-cloud
computing networks, transfer learning, YOLO-v5s.

Manuscript received 11 May 2023; revised 18 July 2023; accepted
30 July 2023. Date of publication 3 August 2023; date of cur-
rent version 7 February 2024. This work is supported in part by
National Key R & D Program of China (Grants No. 2022YFE0125400),
National NSFC (Grants No. 62102053 and 62072060), Chongqing Research
Program of Basic Research and Frontier Technology (Grant No.
cstc2022ycjhbgzxm0058), Key Research Program of Chongqing Science &
Technology Commission (Grant No. cstc2021jscx-dxwtBX0019), Haihe Lab
of ITAI (Grant No. 22HHXCJC00002), the Natural Science Foundation
of Chongqing (Grant No. CSTB2022NSCQ-MSX1104), the General
Program of Chongqing Science & Technology Commission (Grant No.
CSTB2022TIAD-GPX0017), Regional Innovation Cooperation Project of
Sichuan Province (Grant No. 2023YFQ0028), Regional Science and
Technology Innovation Cooperation Project of Chengdu City (Grant
No. 2023-YF11-00023-HZ), Guangdong Pearl River Talent Recruitment
Program (Grants No. 2019ZT08X603 and 2019JC01X235), and Science
and Technology Plan Project of Chongqing Economic and Information
Commission (Grant No. 2211R49R03). The associate editor coordinating
the review of this article and approving it for publication was X. Fu.
(Corresponding author: Xiuhua Li.)

Hui Li, Xiuhua Li, Qilin Fan, and Qingyu Xiong are with the School
of Big Data and Software Engineering, Chongqing University, Chongqing
400044, China (e-mail: h.li@cqu.edu.cn; lixiuhua1988@gmail.com; fan-
qilin@cqu.edu.cn; xiong03@cqu.edu.cn).

Xiaofei Wang is with the Tianjin Key Laboratory of Advanced Networking,
School of Computer Science and Technology, Tianjin University, Tianjin
300072, China (e-mail: xiaofeiwang@tju.edu.cn).

Victor C. M. Leung is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China, and also with the
Department of Electrical and Computer Engineering, The University of British
Columbia, Vancouver, BC V6T1Z4, Canada (e-mail: vleung@ieee.org).

Digital Object Identifier 10.1109/TNSM.2023.3301718

I. INTRODUCTION

RECENTLY, with the rapid development of smart man-
ufacturing and industrial automation, component pro-

duction efficiency has been significantly improved [1], [2].
However, due to differences in technical level and working
condition, the quality of manufactured components are eas-
ily affected, and surface defects (e.g., surface scratches, oil
spot, holes and wrinkles) occur frequently [3], [4], [5]. Surface
defects not only affect the aesthetics of component, but also
have a significant impact on product performance. At present,
manual detection methods are still widely used by various
industrial component manufacturers [6]. Training workers to
identify these complex and tiny surface defects has many
disadvantages such as high workload and low detection accu-
racy, which cannot meet the requirements for defect detection
consistency and high efficiency in industrial networks.

Deep learning (DL) technology has achieved excellent
results in defect detection scenarios [7], [8], [9]. DL has
huge computational complexity and requires high-performance
graphics processing units to support model training and infer-
ence [10], [11]. Although cloud-based computing architecture
has enough computing and storage resources to complete the
training of DL model, the real-time requirement of defect
detection is usually difficult to guarantee. Multi-access edge-
cloud computing (MEC) networks have emerged as a novelty
promising technique that enables large amounts of raw data
processed at network edges (e.g., base stations (BSs)) to
improve the quality of service [12], [13], [14]. To deal with
high detection delay in cloud servers, MEC networks can
deploy DL model at edge servers of industrial networks to pro-
vide real-time defect detection services for Internet of Things
(IoT) devices nearby. It can be expected that this new network
architecture will be popular in the next-generation industrial
networks.

Although MEC has advantages in handling delay-sensitive
services, there still exist several technical bottlenecks in per-
forming defect detection. DL model requires a large number of
marked datasets for model training [15], [16]. The distribution
of surface defects in actual industrial manufacturing environ-
ments is quite different and produced components often have
tiny surface defects. It is difficult to obtain sufficient defect
data for each specific defect type. Detection performance for
tiny surface defects is poor when sufficient data can not be

1932-4537 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0222-5150
https://orcid.org/0000-0001-9041-0297
https://orcid.org/0000-0003-0856-3695
https://orcid.org/0000-0002-7223-1030
https://orcid.org/0000-0003-3529-2640

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 311

Fig. 1. Paradigm of transfer learning and traditional deep learning.

obtained [17], [18]. Meanwhile, centralized training requires
collecting different types of defect data, and finally training
detection models separately. It will increase the difficulty of
defect detection, leading to lower system scalability. Transfer
learning (TL) [19], [20], [21] as a novel DL approach that
focuses on learning common knowledge from one or more
related fields but different application scenarios to help DL
models achieve better performance. As shown in Fig. 1, com-
pared with traditional DL models, TL first trains a pre-trained
model from a larger dataset in the source domain, and then
fine-tunes the pre-trained model via limited training data in
the target domain. Therefore, TL can effectively address the
challenges of limited training data for tiny surface defects in
MEC networks described earlier [22], [23].

Several existing studies have investigated defect detection
problems based on TL method in MEC networks. The authors
in [19] proposed a TL-enabled edge convolutional neural
network framework in industrial edge networks. To address
the limited training data for defects, the proposed framework
general pre-trained defect detection model on the edge layer.
The locally limited dataset is used to further fine-tune the
pre-trained model parameters from IoT devices. Gai et al.
[24] proposed an end-to-end flexible hotspot detection frame-
work based on a fully convolutional network with TL to
improve detection performance. The authors in [25] proposed
a deep TL-based detection framework for tag signal detection,
which deploys the TL and offline learning for online detection.
Therefore, it is attractive to investigate how the MEC and TL
technology can be efficiently combined to enhance the defect
detection performance of industrial MEC networks.

To accelerate the defect detection process in MEC networks,
there is a fundamental challenge to overcome.

How to efficiently combine the MEC and TL technology
with limited training data to improve the surface defect
detection performance? TL can train a proper surface defect
detection model with minimal training samples by learning
common knowledge between source domain and target domain
in MEC networks. The cloud servers are usually composed of
high-performance server clusters with powerful computing and
storage capabilities, therefore, we store source domain with a

large amount of training data at the cloud servers first and
pre-train a detection model through the source domain. Then
the cloud servers send the pre-trained model parameters to the
edge servers near the IoT devices and initialize the detection
model at the edge servers. The edge servers use the limited
training data in the target domain to fine-tune the pre-trained
model parameters and deploy the defect detection model at
edge servers for surface defect detection.

In this paper, we are motivated to explore the issue of
surface defect detection in MEC networks. Particularly, we
integrate the MEC and TL by pre-training a general defect
detection model at cloud servers, and then fine-tuning the
pre-trained model at edge servers according to limited local
specific surface defect data for different industrial manufac-
turing environments. The main contributions are stated as
follows:

• We present a three-layer MEC architecture that supports
neural network knowledge transfer in different feature
spaces through TL, for practically improving detection
accuracy and detection delay of surface defects.

• We improve the original YOLO-v5s framework by intro-
ducing the spatial and channel attention mechanism, and
adding an additional detection head to strengthen the
defect detection performance on tiny surface defects.

• We propose a real-time surface defects detection frame-
work based on the TL with MEC networks. Edge servers
use a relatively small amount of defect data to fine-
tune the pre-trained model from cloud servers, which can
effectively improve the performance of limited training
data for tiny defects and reduce model training time.

• We evaluate the performance of the proposed framework
through extensive experiments on real-world datasets.
Experimental results demonstrate that the proposed
framework has superior performance in terms of improv-
ing detection accuracy and reducing detection delay.

The remainder of the paper is organized as follows. We dis-
cuss the related work in Section II. Section III introduces the
system design and problem formulation. We present the design
of defect detection framework in Section IV. Performance
evaluations are shown in Section V, followed by concluding
remarks in Section VI.

II. RELATED WORK

A. Edge-Cloud Computing for Defect Detection

Recently, many pioneers researchers have studied defect
detection problems in edge or cloud computing networks
[26], [27], [28], [29], [30], [31]. Zhu et al. [26] proposed
a deep learning-based defect detection framework, by mod-
ifying the network structure of DenseNet to better adapt to
resource-constrained edge networks. Liu et al. [27] proposed
a fast detection method for intelligent key power line com-
ponents at the network edges and improved spatial pyra-
mid pooling techniques for the YOLO-v5 framework, which
greatly improves detection accuracy. Xia et al. [28] proposed
a YOLO-based detection framework for power equipment
defect detection in the industrial environment, which uses a
lightweight multi-layer neural network to learn the features

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

312 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

for image classification on cloud servers. However, these stud-
ies only considered training the defect detection model in
the edge or cloud servers separately, and it is difficult to
take full advantage of the edge-cloud collaborative computing
mode.

To take advantage of the potential of edge-cloud collabora-
tive computing, many researchers try to use edge-cloud col-
laborative computing technology to complete defect detection
tasks. Zhao et al. [29] proposed an edge-cloud collaborative
defect detection architecture. At the edge layer, defect inspec-
tion equipment can realize the collection of inspection image
data, the cloud layer enables efficient image data storage and
analysis, and adjusts the edge detection method by the TL
method. Liang et al. [30] proposed an edge-cloud collabo-
ration target detection framework, named EdgeYOLO, which
can effectively avoid excessive cloud computing power depen-
dence and uneven distribution of computational resources.
Tang et al. [31] proposed a two-stage algorithm to identify
defect images with high sensitivity. By installing multiple sen-
sors and using cloud servers to establish edge-cloud computing
infrastructure based on IoT devices, it could automatically
detect defects with low delay and higher precision. These
studies have been evidenced to improve defect detection
performance.

B. Deep Learning for Defect Detection

Extensive studies based on DL have been conducted
and achieved excellent performance for defect detection.
Girshick et al. [32] proposed the R-CNN algorithm, which
applied a convolutional neural network to the object detection
field for the first time and achieved an average precision of
53.3%. Furthermore, Girshick [33] proposed the Fast-RCNN
algorithm in 2015 and used the multi-task loss function to
return the category judgment and bounding box regression.
On the basis of Fast-RCNN, Ren et al. [34] proposed the
Faster-RCNN algorithm by using a neural network instead of
a selective algorithm to generate the candidate regions with a
slower time. However, these studies usually focused on opti-
mizing defect detection accuracy as the first goal and ignored
detection delay in defect detection process.

To deal with scenarios with high real-time requirements,
many researchers try to improve detection speed while ensur-
ing average detection accuracy. Redmon et al. [35] proposed
a real-time target detection model YOLO, which directly
completed the generation of position coordinates and object
category probabilities task. The authors in [36] proposed a
new center point-based single-stage object detection algorithm,
named CenterNet, by displaying the target through the center
point and returning some attributes of the target. Although
these DL models could solve real-time requirements, how-
ever, the distribution of surface defects is obviously different.
Centralized training paradigm can only be applied to a sin-
gle specific type of surface defect. To address the challenge,
TL [19], [20], [37], [38] focuses on knowledge transfer across
domains and can guide neural networks and pre-trained models
in different feature spaces, which can be used for addressing
the surface defect detection problem in this paper.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

III. SYSTEM DESIGN AND PROBLEM FORMULATION

In this section, we first introduce the topology of MEC
architecture, then discuss the surface defect detection process
modeling. Finally, we formulate the corresponding problem
for defect detection in the considered MEC network. Some
key parameters are listed in Table I.

A. MEC Architecture for Defect Detection

As illustrated in Fig. 2, we consider a scenario of MEC
architecture for industrial manufacturing with a cloud server
and B edge servers (denoted by B = {1, 2, . . . ,B}). The
network topology for surface defect detection mainly includes
three layers, i.e., device layer, edge layer and cloud layer.

1) Device Layer: the device layer is mainly composed of
different types of IoT devices, such as cameras, machine tools,
sensors or lighting devices. These IoT devices are randomly
distributed in different factories or production lines in different
geographical locations through wireless or wired connections
to communicate with the edge servers. Components produced
at different production lines often have diverse tiny defect
types (e.g., hole defects or corrugated folds) and the training
data for each specific surface defect type is limited. Therefore,
the detection model needs to be properly designed for each
specific surface defect type. Besides, the device layer com-
pletes the collection of surface defect data and transmits them
to the edge layer in real time for detection.

2) Edge Layer: the edge layer consists of a certain number
of edge servers, which are located at the edge of industrial
network close to the data source (i.e., device layer). Each
edge server has certain computing and storage capabilities,
and can complete transferred pre-trained model fine-tuning
and defect detection model deployment. Input data at differ-
ent edge servers are specific surface defect data, which are
captured at defect inspection points in different factories or
production lines from the device layer. These defect data have
different background textures and defect types, therefore, each
edge server needs to deploy a specific defect detection model
to complete the detection of surface defects.

3) Cloud Layer: the cloud layer has powerful data process-
ing and storage capabilities that can complete the pre-training

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 313

Fig. 2. Topology of the considered MEC architecture for defect detection.

of general surface defect detection models. The cloud layer
and edge layer are connected by wired links and can exchange
information with each other. Due to the lack of prior knowl-
edge of specific surface defect types, the pre-trained detection
models usually have a certain generalization detection ability
and can complete the detection of various types of surface
defects, but the detection accuracy for each specific surface
defect type is difficult to guarantee.

B. Surface Defect Detection Process Modeling

In the considered MEC network, we should further trans-
fer the pre-trained surface defect detection model from the
cloud servers to each edge server. The detailed defect detec-
tion process in the considered MEC network is illustrated in
Fig. 3. Specifically, we train the surface defect detection model
through TL in an edge-cloud collaboration manner, and then
deploy the defect detection service at each edge server. The
defect detection service moving from the centralized cloud
layer to the edge layer near the data sources, can signifi-
cantly reduce detection delay and alleviate the pressure on the
core network bandwidth. The whole detection process of the
surface defect in the considered MEC network can be sum-
marized as follow: 1 : The cloud servers use training data in
source domain to train a DL neural network as the general pre-
trained detection model for all general surface defect types.
2 : Then the cloud servers transfer the pre-trained detection
model to the edge servers. Note that the distribution of sur-
face defects in cloud servers and edge servers is quite different
and the training data for each specific defect type is limited.
3 : The edge servers receive the pre-trained model from the
cloud servers, then it uses the local specific type of limited
defect data (i.e., target domain) to fine-tune the pre-trained
model to obtain a new model with higher accuracy or infer-
ence speed, and apply it to local specific surface defect type.
4 : After the above steps, each edge server is trained to obtain
a proper detection model and deploy it on the local edge server.
When the device layer has newly generated surface defect data
(i.e., defect images) that needs to be detected, it only needs to

Fig. 3. Detailed defect detection process in the considered MEC network.

send the surface defect data to the corresponding edge server,
and use the fine-tuned model for surface defect detection at
the edge server instead of the cloud servers.

C. Problem Formulation

In the considered MEC network, the limited training data in
target domain distributed on edge servers is not enough to train
a robust detection model for tiny surface defects. To address
the challenge, in this paper, we propose a real-time surface
defect detection framework based on TL in MEC networks.
Denote DT = {(xt1 , yt1), (xt2 , yt2), . . . , (xtnT , ytnT)} as the
dataset of target domain, where (xtnt , ytnt) ∈ DT is train-
ing sample and nT is the total sample size of target domain
DT . Denote DS = {(xs1 , ys1), (xs2 , ys2), . . . , (xsnS , ysnS)}
as the dataset of source domain, in which (xsns , ysns) ∈ DS

is the training sample in source domain dataset DS and nS
is the total sample size. Source domain dataset DS usually
has a larger training sample than target domain DT (i.e.,
nS >> nT). Moreover, source domain dataset DS usu-
ally has a certain task similarity with target domain dataset
DT , so that DS and DT can share certain model param-
eters through the TL. That is, it is feasible to transfer
the model parameters trained with a large amount of data
in the source domain DS to the target domain DT for
prediction. Denote �S = {X S ,Y S , f S (X S ; θS)} and �T =
{XT ,Y T , f T (XT ; θT)} as the set of mapping relationship
on the source domain dataset DS and target domain dataset
DT , respectively, in which X S = {xs1 , xs2 , . . . , xsnS } is the
input feature space, Y S = {ys1 , ys2 , . . . , ysnS } is the label
space, f S (X S ; θS) is the predictive function and θS is the pre-
trained model parameters on source domain DS . Besides, the
term XT = {xt1 , xt2 , . . . , xtnT }, Y T = {yt1 , yt2 , . . . , ytnT },
f T (XT ; θT) and θT is the input feature space, label space,

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

Fig. 4. Diagram of the proposed framework for surface defect detection in
the considered MEC network.

predictive function and model parameters on target domain
DT , respectively.

The main goal of the proposed framework is to train a detec-
tion model with minimal training samples of target domain
DT by using common model parameters between source
domain DS and target domain DT . The defect detection
problem in the considered MEC network can be modeled
as a learning task f S (X S ; θS) → f T (XT ; θT) to improve
prediction accuracy on target domain dataset DT by knowl-
edge transfer between source domain DS and target domain
DT . Thus, the defect detection problem can be formulated as

P : min f T
(
XT ; θT

)
(1a)

s.t. θT ⊆ θS , and θT is initialized by θS . (1b)

The constraint (1b) shows that θT should be a subset of θS .
θT is initialized by θS through TL and can be updated by
fine-tuning the model parameters using the target source DT .
To address the defect detection problem, we propose a real-
time surface defects detection framework based on TL in MEC
networks.

IV. DESIGN OF DEFECT DETECTION FRAMEWORK

In this section, we first discuss the overview of the YOLO
framework and explain the reason why YOLO-v5s frame-
work is used instead of other versions. Then we show the
detailed structure of the detection model of the improved
YOLO-v5s framework. Next, we apply TL to address the chal-
lenge of limited training data for each specific defect type
in MEC networks. Finally, we give the loss functions of the
improved YOLO-v5s framework. The diagram of the proposed
framework for surface defect detection can be shown in
Fig. 4.

A. Overview of YOLO Framework

The YOLO framework [39], [40], [41] is a popular DL-
based object detection system. Each version of YOLO frame-
work has different advantages. YOLO-v1 is an object detection

system capable of fast object detection and classification.
However, its performance is relatively poor on the detection of
tiny objects. YOLO-v2 introduces multi-scale detection tech-
nology and the expansion of convolutional layers to greatly
improves defect detection performance. YOLO-v3 improves
the accuracy of the detection model by integrating the resid-
ual connection and multi-scale prediction. YOLO-v4 further
improves the defect detection speed and accuracy by adding
the SPP module and CSPDarknet53 network. It has achieved
excellent performance on object detection datasets. We do
not choose the latest version of the YOLO framework (e.g.,
YOLO-v6 or YOLO-v7) for surface defect detection, because
the new version of the YOLO framework may require more
computing and storage resources caused by more complex
model architecture or larger model size, which may not
be suitable for the current detection tasks and application
scenarios.

YOLO v5 [42] uses the cross-stage partial network [43]
as the model backbone and path aggregation network [44] as
the model neck for feature aggregation, which has achieved
remarkable success in the field of image detection. Compared
with other versions of YOLO, YOLO v5 has higher accuracy
and easier deployment. To enhance the defect detection abil-
ity on tiny surface defects, in this subsection, we have made
the following improvements on the original YOLO-v5s frame-
work: 1) We introduce convolutional block attention module
(CBAM) to enhance the spatial and channel attention on the
area that contains tiny surface defects to obtain more key
information; Specifically, spatial attention focuses the detec-
tion model on local features like the target’s outline, while
channel attention emphasizes channel-specific information
such as color and texture. This integration enhances classi-
fication accuracy by capturing fine-grained details and dis-
criminating between different classes. 2) On the basis of
three prediction heads of original YOLO-v5s framework, we
add an additional detection head in the head network and
change the structure of neural network to strengthen detec-
tion performance for tiny surface defects. The detailed model
architecture is shown in Fig. 5, and its architecture can be
divided into four parts: input layer, backbone network, neck
network and head network.

B. Detailed Structure of Improved YOLO-v5s Framework

The input layer can realize the function of data enhance-
ment, adaptive anchor box calculation, and image scaling. The
backbone network is mainly composed of focus structure [45]
and CSP1_X_CBAM structure, and mainly completes the fea-
ture extraction of defect data. The focus structure can perform
slice and convolution operations on input data and slice images
according to the pixel interval, and integrates the width and
height information into the channel. Its main purpose is to
reduce the parameters and improve the speed of forward and
backward propagation. To improve the performance of YOLO-
v5s framework on tiny surface defects, we intend to change
the size of the feature map obtained by the first downsam-
pling in the backbone network from 76*76 to 152*152. This
operation generates a larger feature map that can save more

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 315

Fig. 5. Detailed structure of improved YOLO-v5s by introducing the spatial and channel attention mechanism, and adding an additional detection head.

image information and reduce the feature loss of tiny sur-
face defects. Correspondingly, in the neck network, we also
performed an upsampling operation to obtain a 152*152 fea-
ture map and spliced the feature map obtained at the channel
level to integrate strong semantic features and localization
features. So, we correspondingly have 4 layers of feature
fusion maps in the head network, the sizes of which are
152*152, 76*76, 38*38 and 19*19. Input image area cor-
responding to each grid in the larger-size feature map is
smaller, which is more suitable for detecting tiny surface
defects.

CBAM module is an efficient and lightweight attention
module that combines spatial and channel attention, which
can be integrated into the YOLO-v5s framework to complete
the detection of surface defects. Specifically, spatial attention
can make the detection model pay more attention to local
features such as the outline of the target, while channel atten-
tion can better learn the channel feature information such as
the color and texture of the target, thereby improving the
classification accuracy. To help the YOLO-v5s framework to
pay more attention to the feature information of tiny surface
defects, we connect CBAM module in parallel with the orig-
inal CSP1_X module. Clearly, the CSP1_X_CBAM module
divides the feature map into three branches and performs for-
ward propagation separately, and then fuses the original feature
maps of three branches to obtain a new feature map. CBAM
module can obtain more key information by enhancing the
attention on important regions containing defects. Denote H,
W and C as the length, width and number of channels, respec-
tively. For the input feature map F, we can calculate the weight

of each channel according to the formulas

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= σ
(
W1

(
W2

(
FC
avg

))
+W1

(
W2

(
FC
max

)))
. (2)

We perform the max pooling (MaxPool) and average pooling
(AvgPool) on each channel of input feature map, and then go
through multi-layer perceptron. After that, we multiply the cor-
responding elements of feature vector output one by one, and
finally execute sigmoid activation function. Taking the fea-
ture map output by the channel attention module as input,
the MaxPool and AvgPool are performed in sequence, and
then the convolution operation is performed on the obtained
intermediate vector. After passing the obtained result to the
sigmoid activation function, we can obtain the spatial attention.
Therefore, the calculation process can be expressed as

Ms(F) = σ
(
f 7×7(AvgPool(F)); (MaxPool(F))

)
. (3)

C. Transfer Learning Through Fine-Tuning in MEC
Networks

We select the steel surface defect dataset as the source
domain DS and the railway tracks dataset and NEU-DET
dataset as target domain DT , respectively. The specific trans-
fer process of using the TL to train the improved YOLO-v5s
framework in the considered MEC network can be shown in
Fig. 6. In the process of using source domain DS to improve
the surface defect detection performance on target domain DT

through knowledge transfer, we keep the previous modules
unchanged and use the parameters of the pre-trained model to

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

316 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

Fig. 6. Transfer learning process between cloud servers and edge servers in the considered MEC network.

initialize the model parameters at the edge servers. The cloud
servers are usually composed of high-performance server clus-
ters with powerful computing and storage capabilities, so we
store source dataset DS with a large amount of training data
at first, and then pre-train detection model FS (·; θS) through
source domain DS . Thus, the definition of this process can be
shown in the formula as

FS
(
·; θS

)
= argminRS

(
f S

(
X S ; θS

)
,Y S

)
, (4)

where RS = 1
nS

∑nS
i=1 L(f

S (xsni ; θ
S), ysni) + λJ (f S (·)) is

the risk function, function L(·) is the model loss and J (·) is
the regularization term. θS is the parameter of the pre-trained
model, which can be defined as

θS =
{
θSi

}|θS |
i=1

, (5)

where θSi is the number of parameters at each layer of
the pre-trained model and |θS | is the number of layers.
The pre-trained model from the cloud server greatly reduces
the training time of the model, and enables the under-
lying network of the improved YOLO-v5s framework to
learn some primary features through source domain DS ,
such as color features, texture features, and edge features,
which are used for subsequent of knowledge transfer provides
guidance.

After that, the cloud server sends the pre-trained model
parameters θS to each edge server near the IoT devices, and
initializes the defect detection model at each edge server.

Then edge servers use the target domain DT to fine-tune the
model parameters and update the randomly initialized layer.
By training the model with target domain DT to fine-tune the
parameters, the knowledge can be transferred and the model
can complete defect detection tasks for each specific defect
type. The process is defined as

FT
(
·; θT

)
= argminRT

(
f T

(
XT ; θT

)
,Y T

)
(6)

where θT is initialized by θS through TL. θT can be
updated by fine-tuning the model parameters using the tar-
get domain DT . RT is the risk function of target domain
the same as RS . Since the parameters θT of the proposed
framework at the edge servers are initialized by θS , the train-
ing of the detection model can be guided by knowledge
transfer, and the convergence speed will be improved. The
detailed process of the proposed framework can be shown in
Algorithm 1.

D. Network Loss Function

Surface defect detection mainly needs to consider several
requirements, such as the defect size, category and location.
The YOLO-v5s framework mainly uses three loss functions
(named classification loss, objectness loss, and GIoU loss) to
measure defect detection performance. For defect classifica-
tion, the output predicted labels are usually mutually exclusive,
thus, we use the binary cross entropy loss function to represent

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 317

Algorithm 1: Improved YOLO-v5s Framework Based on
Transfer Learning for Surface Defect Detection

1 Input: Source domain dataset DS and target domain
dataset DT , the configuration information of all IoT
devices and edge servers.

2 Select datasets of steel surface defect and railway tracks
as source domain DS and target domain DT .

3 —Step 1. [YOLO-v5s framework improvement]
4 Replace CSP1_ X with CSP1_X_CBAM module in the

YOLO-v5s framework by introducing the spatial and
channel attention mechanism (the calculation process can
be shown in formula (3), (4) and (5)).

5 Changing feature map F obtained by the backbone and
neck network and add additional detection head
152*152*18 for tiny defects in head network.

6 —Step 2. [Transfer learning]
7 for edge server index b = 1, 2, 3, . . . ,B do
8 Migrate the pre-trained model parameters θS from

cloud server to edge server b for fine-tuning.
9 Minimize loss functions (9), (10) and (1) to train the

improved YOLO-v5s framework.
10 Complete the training of the improved YOLO-v5s

framework and deploy the defect detection model on
the edge server b.

11 end
12 Output: mAP, precision, recall and detection time.

the class probability and its formula as

Losscls =

S2∑
i=0

B∑
j=0

1
obj
ij

∑
c∈classes

[pi (c) log(pi (c))

+ (1− pi (c)) log(1− pi (c))] (7)

where S2 is all grid cells, B is all prediction boxes, 1objij
indicates that whether it is a positive sample and pi (c) repre-
sents the real labelled classification probability. The objectness
loss function is mainly used to calculate the confidence of the
network and it can be calculated as

Lossobj =
S2∑
i=0

B∑
j=0

1objij [ci log(ci) +(1− ci) log(1− ci)]−

S2∑
i=0

B∑
j=0

1noobjij [ci log(ci) +(1− ci) log(1− ci)]

(8)

where 1noobjij indicates that whether it is a negative sample.
ci is the label value of defect detection.

To frame the detected region, we need to predict the location
information of bounding box. Intersection over Union (IoU) is
the ratio of intersection and union of target box and truth box,
which is often used to measure the accuracy of predicted box
in target detection. For predicted detection box A and truth
box B, IoU loss of two boxes is expressed in the formula as
IoU =

|A∩B |
|A∪B | . Please note that when the truth box contains

the predicted detection box, no matter where the predicted
detection A box is in the truth box B, the location loss remains
the same. Besides, the value of IoU is 0 means the predicted
detection box A and real box B do not intersect, which cannot
represent the distance between the predicted detection box and
the truth box, and further optimization cannot be completed.
Therefore, on the basis of IoU, the YOLO-v5s framework uses
generalized IoU (GIoU) loss to represent the location loss.
GIoU introduces the smallest box that can frame the truth box
and the predicted detection box at the same time, denoted as
C. Thus, the calculation formula of GIoU can be given as

GIoU = IoU − |C\(A ∪ B)|
|C | . (9)

Thus, the GIoU localization loss of the improved YOLO-v5s
framework can be calculated as

LossGIoU = 1− GIoU. (10)

E. Complexity Analysis

The computation complexity of Algorithm 1 mainly comes
from the model training of source domain DS in the cloud
servers and target domain DT at edge servers. Define the
training episodes for the source domain and target domain as
|K S | and |KT |, respectively. The sample space sizes of the
training dataset of the source and target domains as nS and
nT , respectively. Therefore, according to the complexity com-
putation analysis of the training and testing, the computation
complexity of Algorithm 1 is O(|K S | · nS + |KT | · nT).

V. PERFORMANCE EVALUATION

A. Experiment Setup

To train the improved YOLO-v5s framework, the stochastic
gradient descent method with cosine annealing and restart is
used. The initial learning rate and final OneCycleLR learning
rate is set as 0.00312 and 0.12, respectively. The batch size is
120, the momentum is 0.875, the weight_decay is 0.00039, the
mosaic probability is 0.672 and the training is carried out for
2000 episodes. Other models are trained according to the train-
ing parameters recommended in the MMDetection framework.
The training process uses servers with Intel(R) Xeon(R) Silver
4214 2.20GHz processor, 24GB of video memory GeForce
RTX 3090 and RTX 2080Ti with 12GB of memory. The
edge servers are distributed randomly in the considered MEC
network. We set the wireless bandwidth, transmission power,
noise power and antenna gain between the device layer and
edge servers to be 20Mhz, [1.0, 1.5]W, 10−3W and 5dBi,
respectively. The average transmission rate from each edge
server to the cloud computing center is 3Mbps.

B. Comparison Baselines and Metrics

In order to verify the performance of the proposed frame-
work on surface defect detection, in this paper, we used orig-
inal YOLO-v5s, Faster R-CNN [34], SSD [46] and CenterNet
[36] algorithms as comparison baselines, and pre-train these
models on the steel surface defect dataset, and then fine-tune
the pre-trained model of all models on the railway tracks

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

318 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

Fig. 7. Different defect types in the steel surface defect dataset, railway tracks dataset and NEU-DET dataset.

dataset at the edge servers respectively. Faster R-CNN, SSD
and CenterNet algorithms are built using the MMDetection
framework. Faster R-CNN uses ResNet-50 as the backbone
network, SSD uses VGG16 as the backbone network, and
CenterNet uses ResNet-50 as the backbone network.

In this paper, the performance evaluation metrics for exper-
iments mainly include the detection accuracy and detection
delay. We use Mean Average Precision (mAP) to evaluate
detection accuracy. To evaluate detection delay performance,
we calculate it in two ways, that is: i) detect directly at the edge
servers through the TL; ii) use the cloud server for detection
without TL. The detection delay from a-th defect detection
point at device layer to b-th edge server can be calculated

as T e
ab = sa

Rab
+ Cab , where Rab = Ba log2(1 +

Pa |hab |2
σ2)

is the transmission rate, Cab is the inference delay to run
detection models at b-th edge server. sa , Ba , Pa , hab and σ2

represent the data size of defect image, network bandwidth,
transmit power, channel gain and noise power, respectively.
Similarly, the detection delay at cloud server can be calculated
as T c

ab = sa
Rab

+ sa
Rb

+Ca0, where Rb is the transmission rate
from b-th edge server to cloud server, Ca0 is the inference
delay to run these detection models at the cloud server.

C. Dataset Description

Fig. 7 shows different defect types in the steel surface defect
dataset and railway tracks dataset, NEU-DET dataset. We
use the steel surface defect dataset1 as the source domain,

1https://www.kaggle.com/zhangyunsheng/defects-class-and-location.

Fig. 8. Railway tracks image defect distribution.

and the railway tracks dataset and NEU-DET dataset2 as dif-
ferent target domains, respectively. Specifically, the source
domain dataset is steel surface defects collected in actual
industrial manufacturing environments, which is selected from
the Kaggle platform. It contains ten types of surface defects
(e.g., ‘punching’, ‘weld seam’, ‘crescent notch’ and ‘water
spot’). The dataset includes 2294 images, each of which
contains at least one surface defect type. The specific sur-
face defect types are shown in Fig. 7(a). The railway tracks
dataset [47] is obtained by the segmented shooting of railway
tracks. The dataset includes 195 images, each image has at
least one surface defect, and its defect types are divided into
two types: Type-I type and Type-II type, as shown in Fig. 7(b).
Type-I defects are manifested as black holes with obvious dif-
ferences from the surface of the rail, and hole defects appear at
the head of the rail in a random manner. Type-II defects appear

2https://www.kaggle.com/datasets/zy12345/neudet

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 319

Fig. 9. GIoU loss, objectness loss, and classification loss of proposed framework on different datasets at different training episodes.

as the corrugated folds that appear at the head of the rail in
a repeatable and periodic pattern. Fig. 7(c) provides a visual
representation of different categories of surface defects present
in NEU-DET dataset, namely ‘crazing’, ‘pitted surface’, and
‘rolled-in scale’, among others. These surface defects repre-
sent various types of irregularities or anomalies that can occur
on surfaces, such as cracks, indentations, and scales.

We use mosaic data augmentation during model training to
enrich the defect detection datasets. Mosaic data enhancement
stitches together four images obtained by randomly cropping
or randomly scaling the surface defect image in a random dis-
tribution manner to form a new image, which also includes
defect box and defect type information. This splicing and
combination method greatly enriches the training dataset, and
random scaling adds many tiny defects to the images generated
by data enhancement, increasing the probability of tiny defects
in the images. Fig. 8 shows the defect distribution map of the
original image in the railway tracks dataset. The left subfig-
ure shows the location distribution of the surface defects. It

can be seen that the defect distribution in the upper and lower
directions of rail is relatively uniform, and mainly distributed
in the middle. From the right subfigure, we can observe that
the surface defect area is very small, and most of the surface
defect region is less than 20% of the width of the image and
less than 2% of the height of the image. To train and evaluate
the improved YOLO-v5s framework, we employed a common
dataset splitting strategy, where 80% of the dataset was used
for training and the remaining 20% was reserved for testing.

D. Convergence of Proposed Framework

Fig. 9 shows the convergence performance of the proposed
framework on the source domain, railway tracks dataset and
NEU-DET dataset. We can clearly observe that as the num-
ber of iterations increases, GIoU loss, objectness loss and
classification loss will eventually reach the state of con-
vergence. Fig. 9(a) - Fig. 9(c) show different losses on the
source domain. We can easily observe that GIoU loss and

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

TABLE II
DETECTION ACCURACY OF DIFFERENT DEFECT DETECTION MODELS UNDER DIFFERENT TRAINING STRATEGIES

Fig. 10. Performance of mAP@0.5, mAP@0.5:0.95, precision, and recall of the proposed framework at different training episodes on railway tracks dataset.

classification loss curves are relatively smooth and gradu-
ally decrease with the increase of training episodes, while the
objectness loss curve is not very stable. To explain it, it may
be due to the setting of the initial learning rate, which causes
the proposed framework to fall into a local optimum. As the
training continues and the adjustment of the learning rate, the
neural network will gradually find the global optimal solution,
and the network loss will gradually decrease until it converges.
Fig. 9(d) - Fig. 9(f) show the performance of the proposed
framework on the railway tracks dataset, we can also observe
that GIoU loss gradually decreases as the number of iterations
increases, and the curve is relatively smoother, which is similar
to the source domain. The curve of objectness loss and classifi-
cation loss is not stable. This is because the surface defects are
relatively tiny and the uneven distribution of surface defects
in the railway tracks dataset. The proposed framework pays
more attention to fitting the position information of the sur-
face defects at first. Subsequently, as the number of iterations
increases, the impact of GIoU loss on the overall loss becomes
smaller. The proposed framework begins to focus on optimiz-
ing the objectness loss and classification loss, the network
loss will gradually converge. Fig. 9(g) - Fig. 9(i) show the
GIoU loss, objectness loss and classification loss on NEU-
DET dataset. It can be observed that all three curves exhibit
a similar decreasing trend over the training iterations. This
indicates that the proposed framework is effectively learning
to localize objects, distinguish them from the background, and
classify them accurately on the NEU-DET dataset.

E. Performance Comparison of Different Defect Detection
Models Under Different Training Strategies

In this subsection, we evaluate the detection performance of
the proposed framework compared with the baseline scheme
under two different training strategies (i.e., Training with TL
and Training without TL) at two different target domains. As
shown in Table II, we can see that the detection accuracy has

improved after using the TL method in different detection
models, and our proposed framework can improve the detec-
tion accuracy by 1.8% based on RTX 2080Ti on the railway
tracks datasets. In addition, we can also observe the proposed
framework has increased the detection accuracy by 1.6% and
2.1% compared with the original YOLO-v5s model based on
RTX 3090 and RTX 2080Ti, respectively. The main reason
is that the proposed framework with the spatial and chan-
nel attention mechanism, and the additional detection head
increases the complexity of the detection model. The model
feature extraction ability becomes stronger. It can better fit the
surface defect information and capture surface defect regions
to a certain extent in the considered MEC network.

In terms of indicators of mAP@0.5, mAP@0.5:0.95,
precision, and recall at different episodes, we can clearly
observe that these performance evaluation metrics gradually
converge as the number of iterations increases, as shown in
Fig. 10 and Fig. 11. To be more clear, it can be noticed that the
performance of mAP@0.5 (Fig. 10(a), 11(a)), mAP@0.5:0.95
(Fig. 10(b), 11(b)), precision (Fig. 10(c), 11(c)) and recall
rate (Fig. 10(d), 11(d)) without TL begin to converge after
1500 episodes, while the model is trained through TL method
begins to convergence after 750 episodes. Besides, we can
also observe that when the original YOLO-v5s framework
training without TL, the convergence curve of average detec-
tion precision and recall is not as smooth as that training
with TL. This is because due to the limited training samples
in the target domain dataset and the uneven distribution of
surface defects, which leads to the training process is not sta-
ble enough. However, the proposed framework with transfer
learning has prior knowledge, and the learning efficiency and
stability of the training process are higher.

F. Real-Time Analysis of Different Defect Detection Models

In this subsection, we will discuss the real-time performance
of different defect detection models deployed at edge servers

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 321

Fig. 11. Performance of mAP@0.5, mAP@0.5:0.95, precision, and recall of the proposed framework at different training episodes on NEU-DET dataset.

TABLE III
DETECTION TIME AND FPS PERFORMANCE OF DIFFERENT DEFECT DETECTION ALGORITHMS

and cloud server, respectively. Specifically, we perform dif-
ferent defect detection models including Faster-RCNN, SSD,
CenterNet, and YOLO-v5s. The GeForce RTX 3090 graphics
card with 24 GB of memory and the GeForce RTX 2080 Ti
graphics card with 12 GB of memory is used to simulate the
cloud servers and edge servers to complete the defect detec-
tion task. The performance of FPS is shown in Table III. To
explain it, Faster R-CNN is a single-stage detection model
that has the longest inference time. The FPS is only 37.7 and
46.6 at the edge server and cloud server, respectively. Besides,
YOLO v5s model has the fastest inference speed among all
models, with FPS reaching 384.6 and 416.7. The FPS of the
improved proposed framework reaches 312.5 and 357.1 at the
edge server and cloud server, respectively. This is because
the original YOLO-v5s network structure is improved and a
new detection head is added, which increases the complexity
of the neural network, resulting in higher FPS. In addition,
we can observe that the FPS is lower on NEU-DET dataset,
which can be attributed to the larger number and size of the
objects, resulting in slower inference speed. It can still meet
the inference speed requirements of industrial manufacturing
environments for surface defect detection in MEC networks.

Fig. 12 compares the performance of detection delay of dif-
ferent detection models deployed at edge servers and cloud
server, respectively (The values are shown in Table III). We
can easily observe that the detection delay at the edge servers
is lower than that at the cloud servers, and as the infer-
ence speed increases, the detection delay gap between the
cloud server and edge servers for detection becomes more
significant. Specifically, the detection delay of the improved
YOLO-v5s framework on the cloud server is 2.7 times than
that detection on the edge servers. This is because, with the
improvement of the model inference speed, the transmission
time of defect image data from the device layer to the edge
layer has become an important factor affecting the detection
delay. Although the computing power of the cloud server is

Fig. 12. Detection delay of different defect detection models.

stronger, the long data transmission link leads to higher trans-
mission delay excessively. The GPU performance difference
used in this experiment is small, however even if the infer-
ence speed of the cloud server is many times faster than edge
servers, we calculate that the detection delay is still higher than
that at the edge servers. On the other hand, with the increase of
uploaded defect detection tasks, the network bandwidth of the
cloud server will gradually become the bottleneck of defect
detection efficiency. Therefore, the proposed framework can
provide a more stable and real-time defect detection service
for tiny surface defects in MEC networks.

VI. CONCLUSION

In this paper, we have proposed a real-time surface defect
detection framework to improve the detection performance on
tiny surface defects that supports the neural network knowl-
edge transfer in different feature spaces based on the TL
with MEC networks. Specifically, we pre-train a general sur-
face defect detection model with the source domain dataset
at the cloud servers first. Then we fine-tune the pre-trained

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

322 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

model with the different target domain datasets through TL
at edge servers according to the limited local specific defect
type data for different industrial manufacturing environments.
To address the challenge of limited training data for tiny
defects, we have improved the original YOLO-v5s framework
by introducing the spatial and channel attention mechanism,
and adding an additional detection head in the head network
to enhance the detection performance. Experimental results
have demonstrated that our proposed framework has supe-
rior performance in terms of improving detection accuracy
and reducing the detection delay in the considered MEC
network.

REFERENCES

[1] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti, “A hybrid
computing solution and resource scheduling strategy for edge computing
in smart manufacturing,” IEEE Trans. Ind. Informat., vol. 15, no. 7,
pp. 4225–4234, Jul. 2019.

[2] G. Nain, K. Pattanaik, and G. Sharma, “Towards edge computing in
intelligent manufacturing: Past, present and future,” J. Manuf. Syst.,
vol. 62, pp. 588–611, Jan. 2022.

[3] H. Yang, Y. Wang, J. Hu, J. He, Z. Yao, and Q. Bi, “Deep learning and
machine vision-based inspection of rail surface defects,” IEEE Trans.
Instrum. Meas., vol. 71, pp. 1–14, Dec. 2021.

[4] D. Ai, G. Jiang, S.-K. Lam, P. He, and C. Li, “Computer vision frame-
work for crack detection of civil infrastructure–A review,” Eng. Appl.
Artif. Intell., vol. 117, Oct. 2023, Art. no. 105478.

[5] J. Feng, Q. Li, Q. Xiao, and G. Wang, “A method of rayleigh wave
combined with coil spatial pulse compression technique for crack defects
detection,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–11, Feb. 2023.

[6] M. Niu, K. Song, L. Huang, Q. Wang, Y. Yan, and Q. Meng,
“Unsupervised saliency detection of rail surface defects using
stereoscopic images,” IEEE Trans. Ind. Informat., vol. 17, no. 3,
pp. 2271–2281, Mar. 2021.

[7] J. Tang et al., “Anomaly detection in social-aware IoT networks,”
IEEE Trans. Netw. Service Manag., early access, Feb. 6, 2023,
doi: 10.1109/TNSM.2023.3242320.

[8] T. Cao, L. Liu, K. Wang, and J. Li, “A fractional integral
and fractal dimension-based deep learning approach for pavement
crack detection in transportation service management,” IEEE Trans.
Netw. Service Manag., vol. 19, no. 4, pp. 4201–4212, Dec. 2022,
doi: 10.1109/TNSM.2022.3197457.

[9] Y. Liu, H. Xiao, J. Xu, and J. Zhao, “A rail surface defect detection
method based on pyramid feature and lightweight convolutional neural
network,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–10, Apr. 2022.

[10] H. Jin, W. Wu, X. Shi, L. He, and B. B. Zhou, “TurboDL: Improving the
CNN training on GPU with fine-grained multi-streaming scheduling,”
IEEE Trans. Comput., vol. 70, no. 4, pp. 552–565, Apr. 2021.

[11] H.-C. Shin et al., “Deep convolutional neural networks for computer-
aided detection: CNN architectures, dataset characteristics and transfer
learning,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285–1298,
May 2016.

[12] Y.-C. Lai et al., “Task assignment and capacity allocation for ML-
based intrusion detection as a service in a multi-tier architecture,” IEEE
Trans. Netw. Service Manag., vol. 20, no. 1, pp. 672–683, Mar. 2023,
doi: 10.1109/TNSM.2022.3203427.

[13] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for
the Internet of Things: A case study,” IEEE Internet Things J., vol. 5,
no. 2, pp. 1275–1284, Apr. 2018.

[14] F. Spinelli and V. Mancuso, “Toward enabled industrial verticals in 5G:
A survey on MEC-based approaches to provisioning and flexibility,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 596–630, 1st Quart.,
2020.

[15] S. T. Mehedi, A. Anwar, Z. Rahman, K. Ahmed, and R. Islam,
“Dependable intrusion detection system for IoT: A deep transfer learn-
ing based approach,” IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 1006–1017, Jan. 2023.

[16] Y. Singh and A. Biswas, “Robustness of musical features on deep learn-
ing models for music genre classification,” Expert Syst. Appl., vol. 199,
Aug. 2022, Art. no. 116879.

[17] Z. Zhang, P. Zhao, P. Wang, and W.-J. Lee, “Transfer learning featured
short-term combining forecasting model for residential loads with small
sample sets,” IEEE Trans. Ind. Appl., vol. 58, no. 4, pp. 4279–4288,
Jul./Aug. 2022.

[18] X. Ni, H. Liu, Z. Ma, C. Wang, and J. Liu, “Detection for rail surface
defects via partitioned edge feature,” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 6, pp. 5806–5822, Jun. 2022.

[19] B. Yang et al., “A joint energy and latency framework for transfer
learning over 5G industrial edge networks,” IEEE Trans. Ind. Informat.,
vol. 18, no. 1, pp. 531–541, Jan. 2022.

[20] H. Lin, J. Hu, X. Wang, M. F. Alhamid, and M. J. Piran, “Toward secure
data fusion in industrial IoT using transfer learning,” IEEE Trans. Ind.
Informat., vol. 17, no. 10, pp. 7114–7122, Oct. 2021.

[21] W. Qi, R. Zhang, J. Zhou, H. Zhang, Y. Xie, and X. Jing,
“A resource-efficient cross-domain sensing method for device-free
gesture recognition with federated transfer learning,” IEEE Trans.
Green Commun. Netw., vol. 7, no. 1, pp. 393–400, Mar. 2023,
doi: 10.1109/TGCN.2022.3233825.

[22] S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly accurate machine
fault diagnosis using deep transfer learning,” IEEE Trans. Ind. Informat.,
vol. 15, no. 4, pp. 2446–2455, Aug. 2019.

[23] W. Li et al., “A perspective survey on deep transfer learning for fault
diagnosis in industrial scenarios: Theories, applications and challenges,”
Mech. Syst. Signal Process., vol. 167, Mar. 2022, Art. no. 108487.

[24] T. Gai et al., “Flexible hotspot detection based on fully convolutional
network with transfer learning,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 11, pp. 4626–4638, Nov. 2022.

[25] C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y.-C. Liang, “Deep
transfer learning for signal detection in ambient backscatter communi-
cations,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1624–1638,
Mar. 2021.

[26] Z. Zhu, G. Han, G. Jia, and L. Shu, “Modified densenet for automatic
fabric defect detection with edge computing for minimizing latency,”
IEEE Internet Things J., vol. 7, no. 10, pp. 9623–9636, Oct. 2020.

[27] M. Liu, Z. Li, Y. Li, and Y. Liu, “A fast and accurate method of
power line intelligent inspection based on edge computing,” IEEE Trans.
Instrum. Meas., vol. 71, pp. 1–12, Feb. 2022.

[28] W. Xia, J. Chen, W. Zheng, and H. Liu, “A multi-target detection based
framework for defect analysis of electrical equipment,” in Proc. IEEE
ICCCBDA, Apr. 2021, pp. 483–487.

[29] S. Zhao, J. Wang, J. Zhang, J. Bao, and R. Zhong, “Edge-cloud collabo-
rative fabric defect detection based on Industrial Internet Architecture,”
in Proc. IEEE INDIN, Jul. 2020, pp. 483–487.

[30] S. Liang et al., “Edge YOLO: Real-time intelligent object detection
system based on edge-cloud cooperation in autonomous vehicles,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 25345–25360, Dec. 2022.

[31] W. Tang, Q. Yang, X. Hu, and W. Yan, “Edge intelligence for smart
EL images defects detection of PV plants in the IoT-based inspec-
tion system,” IEEE Internet Things J., vol. 10, no. 4, pp. 3047–3056,
Feb. 2023.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE/CVF CVPR, Jun. 2014, pp. 580–587.

[33] R. Girshick, “Fast R-Cnn,” in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2015, pp. 1440–1448.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Advances
Neural Inf. Process. Syst., vol. 28, 2015, pp. 91–99.

[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE/CVF CVPR,
Jun. 2016, pp. 779–788.

[36] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in Proc. IEEE/CVF ICCV,
Oct. 2019, pp. 6569–6578.

[37] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” J. Big data, vol. 3, no. 1, pp. 1–40, May 2016.

[38] J. Talukdar, S. Gupta, P. Rajpura, and R. S. Hegde, “Transfer learning
for object detection using state-of-the-art deep neural networks,” in Proc.
IEEE SPIN, Feb. 2018, pp. 78–83.

[39] W. Liu, G. Ren, R. Yu, S. Guo, J. Zhu, and L. Zhang, “Image-adaptive
YOLO for object detection in adverse weather conditions,” in Proc.
AAAI, vol. 36, 2022, pp. 1792–1800.

[40] G. Li, Z. Ji, X. Qu, R. Zhou, and D. Cao, “Cross-domain object detec-
tion for autonomous driving: A stepwise domain adaptative YOLO
approach,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 603–615,
Sep. 2022.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNSM.2023.3242320
http://dx.doi.org/10.1109/TNSM.2022.3197457
http://dx.doi.org/10.1109/TNSM.2022.3203427
http://dx.doi.org/10.1109/TGCN.2022.3233825

LI et al.: TRANSFER LEARNING FOR REAL-TIME SURFACE DEFECT DETECTION WITH MEC NETWORKS 323

[41] B. Chen, X. Wang, Q. Bao, B. Jia, X. Li, and Y. Wang, “An unsafe
behavior detection method based on improved YOLO framework,”
Electronics, vol. 11, no. 12, p. 1912, Jun. 2022.

[42] J. Wang, Y. Chen, Z. Dong, and M. Gao, “Improved YOLOv5 network
for real-time multi-scale traffic sign detection,” in Proc. Neural Comput.
Appl., Dec. 2022, pp. 1–13.

[43] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-
H. Yeh, “CSPNet: A new backbone that can enhance learning capability
of CNN,” in Proc. IEEE/CVF CVPR Workshops, 2020, pp. 390–391.

[44] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” in Proc. Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 8759–8768.

[45] J. Xue, Y. Zheng, C. Dong-Ye, P. Wang, and M. Yasir, “Improved
YOLOv5 network method for remote sensing image-based ground
objects recognition,” Soft Comput., vol. 26, no. 20, pp. 10879–10889,
May 2022.

[46] W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Springer
ECCV, Sep. 2016, pp. 21–37.

[47] H. Yu et al., “A coarse-to-fine model for rail surface defect detection,”
IEEE Trans. Instrum. Meas., vol. 68, no. 3, pp. 656–666, Mar. 2019.

Hui Li (Student Member, IEEE) received the
B.S. degree from Northeast Agricultural University,
Harbin, China, in 2019. He is currently pursuing
the Ph.D. degree with the School of Big Data
and Software Engineering, Chongqing University,
Chongqing, China. His current research interests
include edge computing and caching, and edge
intelligence.

Xiuhua Li (Member, IEEE) received the B.S.
and M.S. degrees from the Harbin Institute of
Technology, China, in 2011 and 2013, respectively,
and the Ph.D. degree from the Department of
Electrical and Computer Engineering, University of
British Columbia, Vancouver, Canada, in 2018. He
is currently a Tenure-Track Assistant Professor with
the School of Big Data and Software Engineering,
Chongqing University, Chongqing, China, and also
a member of Haihe Laboratory, ITAI. He is the
Head of the Institute of Intelligent Software and

Services Computing associated with the Key Laboratory of Dependable
Service Computing in Cyber Physical Society, Ministry of Education,
Chongqing University. Focusing on the research of edge computing and
caching, and edge intelligence, he has published more than 90 technical
papers in IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, IEEE INTERNET OF THINGS JOURNAL,
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ICC, and
GLOBECOM.

Qilin Fan (Member, IEEE) received the B.E. degree
from the College of Software Engineering, Sichuan
University, Chengdu, China, in 2011, and the Ph.D.
degree from the Department of Computer Science
and Technology, Tsinghua University, Beijing,
China, in 2017. She is currently an Associate
Professor with the School of Big Data and Software
Engineering, Chongqing University, Chongqing,
China. Her research interests include network
optimization, mobile edge computing and caching,
network virtualization, and machine learning.

Qingyu Xiong received the M.Sc. degree from
Chongqing University, Chongqing, China, in 1991,
and the Ph.D. degree in electrical and elec-
tronic systems engineering from Kyushu University,
Fukuoka, Japan, in 2002. He is currently a
Professor with the School of Big Data and Software
Engineering, Chongqing University. His current
research interests include intelligent system and
intelligent computation, and pervasive computation
and embedded system. He is a member of the China
Computer Federation.

Xiaofei Wang (Senior Member, IEEE) received
the B.S. degree from the Huazhong University
of Science and Technology, China, and the M.S.
and Ph.D. degrees from Seoul National University,
Seoul, South Korea. He was a Postdoctoral
Fellow with The University of British Columbia,
Vancouver, Canada, from 2014 to 2016. He is cur-
rently a Professor with the College of Intelligence
and Computing, Tianjin University, Tianjin, China.
Focusing on the research of edge computing,
edge intelligence, and edge systems, he has

published more than 150 technical papers in IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON CLOUD

COMPUTING, IEEE/ACM TRANSACTIONS ON NETWORKING, IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE INTERNET OF

THINGS JOURNAL, IEEE COMMUNICATIONS SURVEYS AND TUTORIALS,
IEEE TRANSACTIONS ON MULTIMEDIA, INFOCOM, and ICDCS. He was
the recipient of the IEEE ComSoc Fred W. Ellersick Prize in 2017. He
received the IEEE ComSoc Asia–Pacific Outstanding Paper Award in 2022.

Victor C. M. Leung (Life Fellow, IEEE) is a
Distinguished Professor of Computer Science and
Software Engineering with Shenzhen University,
China. He is also an Emeritus Professor of Electrical
and Computer Engineering and the Director of
the Laboratory for Wireless Networks and Mobile
Systems, The University of British Columbia,
Canada. His research is in the broad areas of wireless
networks and mobile systems and he has published
widely in these areas. He received the APEBC Gold
Medal in 1977, NSERC Postgraduate Scholarships

from 1977 to 1981, the IEEE Vancouver Section Centennial Award, UBC
Killam Research Prize in 2011, the Canadian Award for Telecommunications
Research in 2017, the IEEE TCGCC Distinguished Technical Achievement
Recognition Award in 2018, and the ACM MSWiM Reginald Fessenden
Award in 2018. He coauthored papers that won the IEEE ComSoc Fred W.
Ellersick Prize in 2017, the IEEE Systems Journal Best Paper Award in 2017,
the IEEE CSIM Best Journal Paper Award in 2018, and the IEEE TCGCC
Best Journal Paper Award in 2019. He is serving on the editorial boards of the
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,
IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS ON

COMPUTATIONAL SOCIAL SYSTEMS, and IEEE ACCESS. He is named in
the current Clarivate Analytics list of “Highly Cited Researchers.” He is a
Fellow of the Royal Society of Canada (Academy of Science), the Canadian
Academy of Engineering, and the Engineering Institute of Canada.

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on March 19,2024 at 07:46:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

